PROCEEDINGS OF THE INTERNATIONAL CONFEREMCE

ON FIFTH GENERATION COMPUTER SYSTEMS 1554,
edited by ICOT. © ICOT, 1984

229

LOGICAL DERIVATION OF A PROLOG INTERPRETER

Kasuhiro Fuchi

ICOT Heasearch Center
Institute for New Generation Computer Technology
Tokyo, Japan

ABSTRACT

This paper describes the derivation of a Frolog in-
terpreter whose principal contrel structure invelves the
transformation of logical formulas. A variable for repre-
senting “continuation” has been added to the basic predi-
cates used in the specifications for the Prolog interpreter.
The AND operator has been eliminated by the introdue-
tion of this variable. The OR operator has been similarly
replaced.

Consequently, a logical fermula corresponding to a se-
quential interpreter with two kinds of stacks is derived by
the side effects of AND and OR elimination. A tail recur-
rion optimization technique can be easily and naturally
introduced for this interpreter. The derived program can
ba easily converted into a conventional programming lan-
guage, in part, becauze it containg a component analogous
to the conventional if-then-else statoment.

1 AND ELIMINATION, OR ELIMINATION

The sequential Prolog interproter iz eszentially a pro-
gram for traversing AND/OR trees depth-first. AND/OR
tree manipulation is suflcient to demonstrate the methodol-
ogy used in this paper; therefore, all bmt the essential
points have been omitted for the sake of simplicity.

The following definitions spply to the AND/OR trees:

« An AND node is represented by a list of goals in which
cach goal is denoted by a list of clauses.

& An empty list for the AND node is interpreted as logi-
cally true,

* An QR node is represented by a list of clauses in which
each clause is denoted either by a list of goals or by an
empty list.

s An empty list for the OR node is interpreted as logically
falaa.

This data structure is provided only for the sake of
simplifying the following description, and to avoid the use
of lzbeled AND/OR trees. The non-labeled ANDJOR
troa introduced im this paper iz equivalent to a labeled
AND/OR tree.

The predicate prove is introduced for this ANDSOR
troe. Its sole argument is the list of goals, in other words,
the AND node. When prove(X) succeeds, it means that
all the goals in the list X are proved truoe.

The predicate try is also introduced for the list of
clauses. Ery(X) represents the result of ORing clauses.

The AND/OR tree traversal is apecified by means of
the prove and try predicates.

prova({l) :- trus.
prove([Goal|Goalsl) -
try(Goal), prove({Goala).
try([1) :- fa1l.
try([Clause|Clauses]) :-
prove(Clause) ; try{Clauses}.

The above formula can be understood as a mom-
deterministic traverssl program. In the current discussion,
howaever, this formula is regarded as the *specification”™ of
the AND/OR tree traversal and is used for the derivation

explained below.

A comment is in order on the notation throughout
this paper. “Logical implication” is represented in inverse
order by the Prolog symbel for implication (). “Logical
and” is denoted by a comma [,), and *logieal or" by a
memicolen ;). Note that these notational conventions are
not part of the normal Prolog syntax but are used only to
represent logieal formulas. A specifie contrel structure i=
not assumed here.

1.1 AND elimination

The predicate and prove is introdueced for the list of
goal lists. It is defined as follows:

and-prove([]) = true.
and. prove([Goale [Goale.1iet])
= prove(Goals), and prove(Goals_list).

The extended prove and try predicates are then
defined as shown below. Note that the auxiliary argument
is introduced and the suffix 1" iz attached to distinguish
an extension,

prove-1(A.B) = prove(A), and_prova(E).
try-1{A,B) = try(A), amd_preve(B).

When the auxiliary variable in the above definitions
becomes an empty Jist, the extended definitions are

230

reduced to the original definition.

prava-1(A,[1} = prove(A), and_preve{[]).
= prove(A), true.
= prove(A).

= try(A), azd_prove([l).
= try(A), true.
= try(A).

try-1(a, 0}

The properties of the extended predicates are derived
from the following transformations:

(i) Inthe case of prove{empty.list, emply_ list)
prove-1{[1,[]1) = prove([]), spd.prove([]}.

=t true, true.
=} true.

(it} In the case of provelempty.Mst, Hst)

prove_1([1, [A|B]} = prove([l}, and-preve([AlB]}.
= true, and_prove([AlBI).
= and_prove([AIB]).
= prove(A), and.prove(B).
= prove-1(A,B).

(i) In the case of prove{list, list)

prove.1([A|B],C) = prove([AlB]), and.prove(C).

= try{A), prove(B}, and_prove(C).

= try(A). and prove({[B|C]).
= try-1(A, [BIC]).

{iv) In the case of try(empiy.list, list]

try.1(01, &) = ury([), sad.prove(n).
= fail, and.prove(A).
= fall.

(v) In the case of tryfempty_list, emply_ list)

try_1([AlIB],c} = try((AlB]), and.prove(C).
= (prave(A) ; try(E}),
and.prova(C) .
=t (prove(A), and_prewa(C)) ;
{(try(B), and_prova(C)).
= prove-1(A,C) ; try-1(B.c}.

In summary, the following interpreter is derived:

prove_1i([1,[]} :- true.

prove-1{[], [Goals|Rezaining-goals]) :-
prove_1(Goals,Re=aining goale).

prove-1{[GoallGonls) Romaining. goalsl :-
try-1{Geal, [Goals|Rezaining_goals]).

try-1([], Ae=aining-goals) :=- fail.

try-1{[Clause|Clauses] ,Rezsining-goals) :-
prove-i(Clause,Remalning-goals) |
try-1(Clauses, Remaining_goals).

Fig. 1 The derived program with AND elimination

This derived program shews the result of AND
glimination. The auxiliary variable containa the list of
goal lists which were unaffected by the lefi-to-right depth-
first expansion of the AND/OR tree, as shown in Fig. 2.
This variabla is used to represent the eoneept of continua-
tion as defined in functional programming (Carlsson 1984)
and to represent the invocation stack of conventional pro-
gramming languages. Moreover, the second formula in
Fig. 1= interpreted as the “pop-up” stack oporation, and
the third formula a3 the “push-down® stack operation.

Fig. 2 The expansion of AND/OR trees

Bacause of the elimination of AND, the formulas in
Fig. 1 consizt only of OR operations. Therefore Fig. 1
can be regarded as a program for an;OR-parallel machine.
Mareover, it'is easy to rewrite the program as a kind of
dataflow graph (see Fig. 3) representing pipelined process-
ing.

Fig. 3 A dataflow graph of a program
from which AND has been eliminated

1.2 Elimination of OR

Since AMD and OR are dual, OR can be similarly
eliminated.

or-try{[l) = fail.
or-try([Clauses |Clauses]) =
try{Clause) ; or_try(Clauses).

Fig. 4 OR processing definltion

prove_2{A.B) = prove(A) ; er.try(E)
try-2{A.B) = try(d) ; or_try(E)

Fig. 5 Predicates for OR elimination

prove.2([] Alternatives) :- trus.
prove_2([Goal |Goals] ,Alternatives) :-
try-2(Goal, Alternatives),
prove (Goals, Altornativea) .
try-2([1, 1) :- fail.
try-2([], [Clauses|Alternatives]) :-
try-2 {Clauses Alternatives).
try-2([Clause |Clausas] ,Alternatives) ;-
prove-2(Clause. [Clauses|Alternatives]).

Flg. 6 AND/OR tree program with OR elimination

The above program is determiniptic. The auxiliary
variable, in this case, represents the backtrack stack. The
entire program carm easily be rewritten in a fumectional
language.

1.3 Elimination of AND-OR

OR elimination can be spplied to the formulas in Fig.
1, which are the result of AND elimination. The following
are the auxillary and extended predicates for applying the
elimination:

and_or.prove([1} = true.
and_or_prove ([[Clauge,Goals] |Remeininge])
= prove-2{Clause,Goals),
and_or-prove(Remainings) .

Flg. T AND-OR processing definttlon

prove-3(Clause, Remainings, Alternatives)
= prove_2{Cluuse,Alternatives),
and.or-prove (Remaininge) .
try-3{Clauco, Renaininge, Alternatives)
= try-z(Clause,Alternatives),
and_or_prove (Remainings) .

Fig. 8 New predicates for AND-OR elimination

A procedure similar to that described in Section 1.2
obtaing the fellowing result:

prove_3([], (1.0} :- true.

prove.3([], [[A,B]1C],D) :- prove_3(A.C.E).
prove-3([A|B],C,D)} :- txy-3(A,[[B,D]IC],D).
try-3([1.A, [1) :- fail.

try-3(01.A, [BIC]) :- try-3{B,A,C).
try-3([AlB],C,D) :- prove.3(A.C,[BID]).

Neither AND nor OR appear on the right hand side
of the above formulas. Notice that a pointer to the call

231

stack is placed on the backtrack stack. The above pro-
gram can be translated into either a Single Assignment
Language (SAL) program like LUCID (Ashcroft 1952} or a
conventional language program. Since the program is tail
recursive, the result of the translation would be a simple
loop program.

1.4 Elimination of OR-AND

Notice also that we can change the order of elimina-
tion, Le., we can eliminate OR before AND, The results
of this transformation are shown below:

or-and-try([l) = fail,
or-and-try{[[Goal,Goals] |Rezainings])
= try-1(Goal,Goals),
or.and _try(Remainings).

Flig. 9 OB-AND processing definition

prove.4(Clause,Remainings, Alternatives)
= prove-1(Clause, Remaininge) ;
or-and.try(Alternetives) .
try-4(Clause,Remainings, Alternatives)
= try-i(Clause ,Remaininge) ;
orf-and_try(Alternatives) .

Fig- 10 New predieates for OR-AND eliminatlion

prove_4([1.(1.0) :- trus.
prove.4([1.[A|B]).C} :- prove-4(A,B.C).
prove 4([A[B] ,C,00 :- try-4{A,[B|c].D).
try-4([0.A,00) :- fail.
try-4([1.A,[[B.C1ID]) :- try—4(B,C.D).
try-4([A|B],.C,D) :- prove_4(A.C,[[B,C]ID]).

Fig. 11 AND/OR tree program
with OR-AND elimination

Tha derived programs for AND-OR elimination and
OR-AND elimination are essentially the same. However,
the stack structure differs in each case. In the Prolog
interpreter derivation, the problem of saving the environ-
ment also causes considerable differences.

1.5 Tail Recursion Optimisation

Consider a case in which the first argoment on the left
hand side of the third formula in Flg. 1 contains only one
elament. In this case, stack manipulation ean be omitted,
instead of pushing and poping the empty list on and off
the call stack.

prove-1{[A],B)

try-1{a, [[1181).

try(A). and_prove([[]IB]).
try(A), prove([]), and_prove(B).
try(A), and_prove(B).
try-1(A,B).

LI

This saves space for the call stack, and time for stack
manipulation. This is a well-known technique for Prolog
compilers and interpreters,

232

2 THE DERIVATION OF PROLOG INTERPRETER

The Prolog interpreter Is derived directly from the
AND/OR tree traversing program discussed above, al-
though some additional techniques are needed to deal with
variable binding and other techniques concerned with en-
vironment handling. The specification is given here for
{pure) Prolog along with variables representing the en-
vironment:

prova([],Goal,Env) :- fail.

prove(Env, [1,Env).

prove(Env, [Goal |Goals] , NewEnvy) :-
claiees(Goal ,Clauses) ,
try(Env,0oal,Clauses, IntEnv) ,
prove{IntEnv,Goals, NewEnv) .

try(Env,Goal, [],HewEnv) :- fail,

try{Env,Geal, [(Head:-Body) [Clauses] , NowEnw) :—
unify(Env,Goal, Bead, IntEnv) ,
prove(IntEnvy, Body, NewEnv) ;
try(Env,Goal,Clauses , NowEnv) .

Fig. 12 Specifieation of Prolog interpreter

The predicate clause gathers clauses whose predicate
names are the same with that of Goal The result is
included in the list Clauses. The predicate unify unifies
Goal and Head. The environment changes from Env to
IntEnv. If Goal and Head fail to unify, unify returns the
empty-list as IntEnv,

prove_list(E, [],E} = true.
prove-1ist(E, [Gs|C],NE)
= prove(E,Gs,IE),
prove-list{IE,C,NE}.
prove_1{E,Gs,Cao, NE)
= prove(E,Gs,IE),
prove-1ist(IE,Co,NE).
try-1(E,&,C1,C0,NED
= try(E,G,C1,IE),
prove-list(IE,Co, NE).

Fig. 13 Definitlon for AND ellmination

prove-1(E,[1, [0,E).
prove_1(E,[], [GsiCo] ,NE) :-
prove-1(E,Ge,lo, NE).
prove.1(E, [G|Ge] ,Co,NE) :-
cleusag(G,C1),
try-1(E,G,C1, [Gs|Cal ,NE),
try-1{E.G, [(H:~-B) |C1].Co NE) :-
unity(E,G,H, IE),
prove_i(IE,B,Co,NE) ;
try-1(E,¢,C1,Co,NE) .

Fig. 14 Resuli of AND elimination

try-list{[e(E,G,C,8) |B], NE)
= try-1(E,3,C,5,HE) :
try-1list(B,NE).
prove-2(E,G,5.B,NE)
= prove-1(E,G,8,NE) ;
try-11st(B,NE).

try-2(E,&,C,5,B,NE)
= try-1(E.G.C.8,NE) ;
try.list(B,NE).

Flg. 15 Definition for AND-OR elimination

prove-2([]1.6.5, [e(0E,0G,0C, 08 |B] . NE}
= try-i([],E.G,E8.HE) :
try-list([e(0E,06,0C,05) |B] ,HE).
= try-liet([a(OE,0G,0C,02) [B] ,NE) .
= try.2(0E,0G,0C.08,B8, NE).
prove-2(E, (], [G]8] ,B,NE)
= P-rm-.1(E+Up[q'ls] .NE} H
try-list(B,NE).
= prove-1(E,G,8,KE) :
try-list(B,.NE).
= prove_2(E,G,5.B,NE).
prove-2(E, [G|Gs],8,B, NE)
= prove-1i(E, [G|Gs] ,8,NE) ;
try-1ist(B,NE}.
= clawees(G,Cs),
try-1(E,G.Cs, [Gs|8].¥E) :
try-list (B, NE) .
= clauvees (G,Cs),
try-2(E,&,Cr, [Ga|8],B,NE).
try-2(E.G, [1,8, [e(0E,08,0¢C,08) |B] , NE)
= try-1(E.G, [1.8,0E) ;
try-liss([e(0E,0G, 0C,08) [B] ,NE) .
= try-2(0E,0G,0C,08,B,NE) .
try-2(E.G, [(H:-B) |C],8,B8,NE)
= try-1(E.G, [(H:-B) |C],8,.NE) ;
try-list(B3,NE}.
= unify(E,& 0 ,E1),
prove_1(E1,B,8,NE) ;
try-1(E.G.C.B,¥E) ;
try-list{BS,KE).
= unify(E.G,H,E1),
prove_1(E1,B,8,NE) ;
try-list{[e(E,&,C, 8) |BS],NE}.
= unify(E,G,H,E1),
prove.2(E1,B.E, [e(E.G,C,8) |BS] ,NE) .

Flg. 186 Elimination process

prove-2([],G,8, [e(0E,DG,0C, 05) |B] ,NE) :-
try-2(0E,0G,0C.05,8,NE) .

preve-2(E, [], [J,BT,E}.
prove_2(E, [1, [Gs|Ce],BT NE) :-
prove-2(E,Ge,Co, BT, NE).
prove-2(E, [G|Ge].Co BT, NE) :=-
clauses (G, C1),
try-2{E,¢,Cl1, [Gei|Co] ,BT,HE) .
tIy-2(E,G, [1,Co, [e (OE,0G,0C1,0C0) |BT], NE) :-
try-2(0E,0G,0C1,0Ce, BT, NE) .
try-2(E,G, [(H:-B) c1] ,Co,BT,KE) :-
unify(E,G,H0,IE),
prove-2(IE,B,Co, [e(E,G,C1,Ca) |BT], NE}.

Fig. 17 Resuli of AND-OR elimination

In the derivation of the formulas shown in Fig. 16,
it should be noted that OR and AND are exchanged by
the distributive law, Allo, variable names must be nsed
consistently. Special care is called for in the use of the
clauses and unify predicates. These predicates here are
assumed to be always successful.

The formulas shown in Figures 12, 14 and 16, can
be treated as an entire Prolog program. The result of
execution of this program is given in Appendix.

3 CONCLUSION

Though there have been other sttempts to derive
Prolog interpreters from specifications [Carlison 1954);
(Furulaws 1082); (van Emden 1981}, the method proposed
here is far simpler. The operstions on call stacks and
backtrack stacks by the methed described in this paper
constitute a gignificant factor in this simplification.

The derived interpreter is sound bocause the transfor-
mation method is essentially equivalent to logical trans-
formation of propositions (Tamaki 1984). Thus, derived
formulas and programs can be verifled from the original
specification, However, the interproter cannot be said to
be complete, because the depth-first algorithm, by pature,
does not assure termination.

The logieal derivation of programs sppears to hold
some promise [Scherlis 1983). However, as there seems
to be no general derivation rele, it is necessary to find
beuristics. For this reason, any attempt at logical pro-
gram transformation is to be encouraged in the hope that
broadly applicable heuristics will eventually be developed.
The methedology employed in this paper, though it deals
only with the derivation of known algorithms, can be
viewed as one of attempt. As another example, it might
prove interesting to apply the ideas presented in this paper
to the feld of arithmetic simplifieation. Note that predi-
cate extention constitutes one of the heuristics mentioned
abave.

4 ACKNOWLEDGEMENT

The author iz grateful to his young colleagues in
ICOT, who are prone to argne over various mspects of
this work., Special thanks are due to T. Kurokawa, K.
Sakai, Y. Tanaka and H. Yasukawa, who belped in prepar-
ing the printed output, and creating the sample programs
in Appendix.

233

REFERENCES

Asheroft, E. A, and Wadge, W. W, A summary of LUCID
for programmers (1981 veralon), Univ. of Waterloo, CS-
82-57, 1982,

Carlgson, M., On implementiog Prolog in functional pro-
gramming, in Proc. 1984 International Symposium on
Logic Programming, pp.154-159, IEEE, 1984,

Forulawa, K., Nitta, K. and Matsumete, Y., Prolog io-
terpreter based on concurrent programming, in Proc. Ist
Int. Conf. Log. Prog., pp.38-44, 1982,

Scherlis, W. L. and Scott, D. 5., First steps towards in-
ferential programming, IFIP-83, pp.199-212, 1983,

Tamaki, H., Semantics of o logic programming langueage
with reduocibility predicate, in Proc. 1984 International
Symposium on Logic Programming, pp.259-284, IEEE,
1984,

van Emden, M. H., An algorithm for interpreting Pralog
program, Univ. of Waterloo, 1981,

234
APPENDIX

/+ Prolog Interpreter written in DEC-10 Prolog */

f* The variables representing the environment =/
/* do not appoar im the program, because thay +/
f* are implicitly supported by the executicn =/
/* mechaniem of Prolog eystem. ¥/

/¥ Bpocificetion Program +/

provel([1).

prove([Goal |Geals]) :-
clauses(Goal,Clanses),
try{Goal,Clauses) ,
prova(Goals) .

try(Goal, [(Head:-Body) |Clauses]) :-
unify(Goal, Head), prove(Bedy) ;
try(Goal,Clavses) .

/* Program frem which AND has been olimivated =/

/* The third clause of provel is for #/
/* tail recursion optimizatiom. #/

provei([1,[1}.
provel([], [Goallcont]) :-
provel(Goal,Cont).
provel([Goall,Cont) :- !,
clauses{Goal,Clauses) ,
tryi(Goal,Clauses, Cont) .
provel([Goal |Goals] ,Cont) :-
clauses(Clauses) ,
tryl (Goal,Clauges, [Goals |Cont]) .

tryi{Goal, [(Read:-Body) |Clavses],Cont) :-
unify(Goal, Head), provel(Body,Cont) ;
tryl{Goal,Clauses, Cont) .

#= Program from which both AND and OR have */
/* boan eliminated =/

f* The third clause of prove2 and +/
f* the gecond clauce try2 are for =/
/% tall recursion optimizaticn. #/

prove2([].E,[],BT) :-
write_answer(E).
prove2(f] .E, [G|Co] ,BT) :-
provez(G.E,Co,BT).
prove2([G],.E.Ce,BI) :- |,
¢lauses(G,C1),
try2(g,E,C1,Ce, BT},
preve2([G|Gs] ,E.Co,BT) :-
clauges(G,C1),
try2(G,E,Cl, [Ge|Ca]l , BT).
try2(G,.E, [0.Co, [e(DG,OE,DC1, DE0) |BT]Y :-
try2{0G,0E,0C1, 0Co,BT) .
try2(G.E, [{(H :- B)],Co.BT) :- !,
unify(G, H),
prove2(B,E,Co,BT).

try2(G,E, [(H :- B) [C1],Co,BT) :-
copy-torm{e(G,E,Co) ,e(G,.E.C)).
wmify (5, H),
prove3(B,E,C, [«(G,E.C1,Co) IBT1).

f% UTILITIES */

write_answer (Answer) :-
writa(® "),
write(Answer) .

solva{DB,Goal) ;-
abolighidb, 1),
essert (db(DB)),
prove(Goal),
Yrite._enever {Goal) .

golvel (DB, Goal) : -
abolish(db, 1),
assert{db(DB)),
provel{Geal, [13,
vrite_answer {Goal).

eolve2(DB,Goal) ;-
aboligh(db,1),
assert{db(DB)),
prova2{Goal,Goal, [J, [1).

gelect_clauss([CiDB], [{K:-B) |IDBe] .G, e, [C|C1]) :-
wify(H,Ge}, !, copy-term(G,Gecd),
select_clauea (DB, DB, G, Ged, 010 .
salect_clause{[- |DB], [-1DBec] .G.8e,C1) := 1,
gelact_clause (DB, DBe,G,Ge,C1) .
ealact-clausa([], [1,6.G2, [1).
elavses(G,C1) :-
db(DB), db(DBe). copy-term(G.Gc),
solect_clansa (DB, DBe,G,5e,C1) .

