PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1884,
edited by 1COT, & ICOT, 1984

EFFICIENT UNIFICATION WITH IHNEIWITE TERMS
IN LOGIC PROGRAMMING

Albarto Martelli and Gianfranco Rossi

Dipartimento di Informatica

Universita'

di Torino

C.s50 M. D'Azeglio, 42
10125 TORING - ITALY

ABSTRACT

Proposals nave bean roecently put
forward to =xtend logic programming so
as to deal with infinite terms. In
this paper we present an algorithm for
unification with infinite terms and we
show that it is simpler and more effi-
cient than previously proposed algo-
rithms both for infinitce terms and for
the standard finite case. FPlnally we
point out that interpreters for legic
programming languages allowing infin-
ite terms can be substantially more
efficient than standard interpreters.

1 INTRODUCTION

Unification algoritnms play a fun-
damental role in the implementation of
programming languages based on leogic
{such as Proleog [Clogksin and Mellish
1951]) or on term rewriting. In fact,
unification must be performed at every
execution step, and thus the effi-
ciency of tnis operation affeckts cru-
cially the efficiency of the whole
interpreter.

In the past, many efforts were
devoted to developing efficient unifi-
cation algoritnms [Huet 1976) [Pater-
son and Wegman 1978] ([Martelli and
Montanari 1982) [Corbin and Bideoit
1983], and many studies are under way
for devising paraliel algorithms suit-
able for hardware implementation.

However, in the implementation of a
legic pregramming language, the per-
formance of a unification algorithm
must be assessed not for & single step
but over the entire computation and
even the most efficient algorithm can
be considered intolerably slow. For
instance, the "occur check" that must
be performed by a unification algo-
rithm to make sure that no varisble is
bound o a term containing it, is
suppressed in many implementations of
Proleg interpreters being considered
too expensive. The conseguence is that

such an interpreter is incorrect,
since it is not able to detect cyclic
definitions such as, for instance, the
one generated by the following program

p(X,X).
- pIELE(K)).

Recently, Colmerauer [Colmerauer
1982] has proposed a novel thecretieal
model of logic programming languages
invelving infinite trees, and has
presented convinecing examples of the
usefulness of such semantics. This
model requires a uwnification algorithm
which does not perform the "“occur
check", but the above mentioned Prolog
interpreters are not correct in this
case too, since their unification
algorithm might loop in the wvnifica-
tion of infinite terms, as can be
checked by running the follewing Pro-
log program

pX,X).
- pUX,E(R)), pUYLEY)), PIX,Y).

In the same paper Colmerauer
presents also & correct (terminating)
algorithm for unification with infin-
ite terms. The problem of unifying
infinite terms was studied in Huet's
thosis [Huet 1976] where the existence
of a most general unifier is proved
for finite and infinite terms, and an
algorithm &o compute it is given.
More recent papers dealing with this
topic are [Mukai 1983] ([Fages 1983a]
[Fages 1983b] [Filgueiras 1984}
[Haridi and Sahlin 1984].

In this paper we propose an algo-
rithm that is simpler and more effi-
cient than previously propesed algo-
rithms. We show alse that well known
algorithms for the finite case (among
them the algorithm of [Martelli and
Montanari 1982])) can be obtained £rom
it by adding suitable operations for
detecting cycles, thus proving that
unification algorithms for infinite
terms may be simpler than those for

finite terms.

Finally we analyze the use of thesa
algorithms in an interpreter for logic
programming languages, showing that an
interpreter £or the infinite case can
ba substantially more efficient than
an interpreter for standard first-
order leogic.

2 BASIC DEFINITIONS

Given two terms t' and t", the
standard unification problem can be
written as an eguation t' = &". B
solution of the eguation, called a
unifier, is any substitution, if it
exists, which makes the Ewo terms
identical. & substitution is a set of
grdered pairs

i<x1.t1>,...,<xn,tn>i,

where the X,'s are distinect wvariables
and the t.'S are terms, such that
®.#k. . FOr istance, a unifier of the
eﬁua%xcn

) f{hEK};YrZ;q[Z}}=f[h19{EJ};Z;ﬂ;Wi
is
[¢x,g(y)>.<y,23,<z,a>,<w,g(2)>}.

1t is convenient to consider also
systems of vations, that is finite
sets of equations. Again, a unifier is
any substitution which makes the pairs
of terms of all eguatiens identical

simul tanecusly. & syscem of eguations
of the form

=t _},

{x =tlr---;xn n

where the x,'s are distinct variables,
is said tb be in solved form. It is
easy to see that such a system has
always an immediate solution. For
instance, a2 sclution of

{x=E(a,y).2=h(w),y=g(z,b)]
is .
(¢x,E(a,gih(w),b})>,
L2 h (W),
<y,g b (w),.b)>}

winich is obtained by repeatedly sub-
sticukting variables with their
corresponding right-hand sides.

A system.in solved form can contain
cycles, namely, €an conktain a variable
which is d;:ectly or indirectly bound
to a term containing it. In tnis case
the solution of the system contains
infinite terms. For instance, a unif-
ier of

) {“=f‘KrY}: y=a}
L5

203,

Eﬁx,flftf{---]rﬂl;a};aﬁ}r<Yra}}

where x is bound to an infinite term.
The close correspondence between sys-
tems in solved ferm and unifiers,
allows wus to use the more convenient
notation of a system in selved form in
place of E&the corresponding unifier,
wnich may contain infinite terms.

To describe the algorithms of this
paper, we reguire some other defini-
tions. We will use the terminoclogy
introduced in [Martelli and Montanari
l962].

A moltieguation 5 = M, where 5 is a
nonempty set of variables and M is a
multiset of nonvariable terms, allows
us to group together many eguations.
For instance, the system of equations

ltl t",.x=t',x—j'_!

can pe easily transformed into Che
eguivalent multieguation:

{{erI-Rt.ru"}]l

4 system of multiegustions is a
finite set of multlequatinns 8. =M
i=l,...,n. It is ln solved form 1% atl
left-hand sides are disjoint and
all right-hand 51de% 4, consist of no
more than one term.

The common part of a multiset ¥ of
terms (variables or not} 1is & Lterm
which, intuitively, is obtained by
guperimposing &ll terms of M and by
taking tne part which is commen to all
of them starting from the root. For
instance, givan the multiset of terms

{ftx,g{h:al,v];yi.f[hiy]-g{xrb};zlj
its common part is
C: £(x,9(x,v),¥).

The frontier is a set of multiegua-
ticns, where every multieguation is
associated with a leaf of the common
part and consists of all subterms (one
for each term of M) corresponding Gto
that leaf. The frontier of the above
multiset of terms is

F: {i{x}l=(hiy) ,nial).
{v}=h,

fy.zl=@l.

Mote that if there is a clash of
function symbols among some terms,
then ¥ has no common part and fron-
tier. 1In this case the terms of ¥ are
not unifiable.

204

Mora rigorous definitions and
procfs of che apove concepts are given
in [Martelli and Montanari 1982].

3 UWIFICATION WITH INFIWITE TERMS

A unification algorithm starcts with
a system of multiequations and repeat-
edly applies transformations until a
syaktem in solved form is obtained.
Transformations are such that they
produce equivalent systems, that is
they preserve the sets of all unif-
iegrs. We introduce the following two
transformations.

COMPACTION. Given a systeam R con-
taining two multieguations S=M and
§'=i', wich /15" # §, the new systenm
R' is obtained by replacing the two
muiciequations witn SUS' = mUn',

REDUCTICON. Given a system R con-
taining a multiegquation S=M, such that
¥ is neonempty and has a common part C
and & frontier F, the new system R' is
cbtained by replacing 5=8 with the
multieguation &=(C) and with all the
mulcleguations of F.

In bokn cases, 3 unifier of R is
&lso a unifier of R and vice-versa,

We can now give the following gen-

eral neon-deterministic algorithm for
unification.

ALGORITHM UNIFY-0

Given a system of multiequations R,
repeatedly perform any of the follow-
ing actions. If neither applies, then
stop with success,

(a) If there are two multieguations
=M and S'=M' with 5N 5'¥@
then apply COMPACTION;
() EE therie is a multieguation S=i4
with size(M)>»1
then compute the common part and
frontier of M;
if M has no common part
then stop witn failure
lse apply REDUCTION.

i

size (M) is a function which returns
the number of terms in the multiset M.

It is easy to see that the above
algorithm always terminates, betn in
the finite and infinite case, with the
final system in solved form {(in the
case of success). To prove termina-
tion one must consider the following
remarks. With REEDUCTION some function
symbol is eliminatced; at each

confrontation of two or more function
symbols only one of them is retained
in the common part, while the others
are discarded. This operation also
introduces new wvariables oscurrences
in the left-hand sides of multiegua-
ticns, but they will be eliminated by
means of COMPACTIONS.

As an example, let us consider the
following system of multieguations:

{({x}=£f{n(y), =z}
{yl=fiz, h(x}) {1}
{Z,vl=p }.

By compacting the £irst with the
third multieguation and then the
resuleting one with the second, we get

{(xsyl=(E£ih(y),2),£(2,h(x)) }.

By applying transformation (B) wa
get

{{u,yi=f(z,2)
{zl=h(y)
{zl=h(x}].

We now apply transformation {(a) to
the second and third multiequation,
and then transformation (b} to the
rezulting one

{{x,¥}=£(=z,2)
{2l=n(y)
{=,v}=¢ 1}

Finally, by compacting the first
and tnird multiegquacions we get the
solved system

{{xrﬂ"]'=£{zr=}
{zl=hiy)]}.

In order to allow efficient imple-
mentations, this algorithm can be
modified by assuming the system R to
be divided into two systems of mul-
Eieguations, Rl and R2, with the only
restriction that Kl must have disjoint
left-hand sides.

ALGORITHM UNIFY-1

-
—-—

Repeatedly perform any of the fol-
lowing actions. 1f neither applies
then stop with success.

{a) extract a multieguation from R2,
and perform all possible (includ-
ing none) COMPACTIONS in Rl dus to
the above multiequation;

(b} if there is a multiequation S=& in

Rl with size(M)>1
then compute the common part and

frontier of M;

if M has no common part

then stop with failure

else apply REDUCTION in RL,
and move the multisgua-
tions of the frontier
into RZ.

Winen tne algorithm stops with suc-
cess, RZ is empky and Rl holds the
system in solved form.

Algorithsm UNIFY-1 is general enough
to allow several concrete algorithms
to be easily derived from it.

For instance, we may obtain a Sim-
ple deterministic algorithm by stating
that action (b) must follow action (a)
and {b) reduces the multieguation com-
puted in (a), Etnat they must be
repeatedly executed until R2 is empty,
and tnat K2 must be treated as a liskt.
As an example, let us consider the
same system as discussed esarlier

RL: {[x}=finiy).2)
fyl=f{z,hix) };
R2: ({x,yl=@).

After the first iteration we have

%, vi=f(z,a8)};

mL: {1
({zlsh(y) {z}=h(x}).

R2:
Performing two more iterations we get

Rl: {{=x,yl=f(2,2)
[zl=hiv)};
R2: ({x,y}=F).

Finally, by compacting the only
multieguation of RZ with the first of
Rl, R2 becomes empty and wWe get the
solved system in R1.

Mote that, because of the ordering
of transformations, systam Rl is imn
solved form after each iteration.
Thus, this modified version of hlgo-
rithm UNIF¥-1 closely corresponds to a
very common way of deseribing the
unification process, where R2Z is a set
of pairs (or n-tuples) of terms to be
unified and Bl represents the binding
anvironment.

The computation of the common part
and of the frontier im Algorithm
UNIFY-1 could be substantially simpli-
fied by introducing intermediate vari-
ables so that every term contains no
more than one function symbol (i.e. it
ts of the form E!xl,___,x i}. 1In this
case, the common part of 5 multiset of
terms may be obtained by selecting
anyone of them, withowt bhaving to

205

construct any new term, and all mul-
tiegquations of the frontier contain
only variables. With these modifica-

tions, our algorithm becomes similar
to the one known in the literature as
Huet's algorithm.

4 SOME REMARKS ON COMPLEXITY

Complexity analysis of our algo-
rithm can be performed with technigues
similar to those used for instance in
jMartelli znd Montanari 1982). It
turns out that the algorithm complex-
ity is egual to the sum of twe terms,
sne linear with the number of function

symbols and another one almost linear
with the number 1] of variable
occurrences in the initial system.

Tne non-lineariky factor depends on
the way multieguations merging is
implemented and is negligible in prac-
tice. Indeed we might represent sets
of wvariables as trees and use the
well-known UNION-FIND algorithms [&Aho
et al.l%74] to add elements and Gto
access them with a complexity of the
order of mwG(m), where G is an
extremely slowly growing function (the
inverse of the Ackermann function).

The main feature which contributes
to +the linearity of our algorithm is
the substitution of the right-hand
side terms of a multieguation with
their common part during REDUCTION.
In fact, reduction of two Cerms
assures that the twe pieces of them
which are compared will be replaced by
just one new term, the common part,
wnose =ize (i.e. the number of vari-
ables and function occurrences in it)
is surely egual or smaller than the
gizes of both discarded pieces.

This feature is also the main
difference among our algorithm and
sther algorithms dealing with infine
ite terms, such as thoese in [Col-
merauer 1982)] or in [Mukai 1983].

Let us consider Colmerauer's algo-

rithm in more details, through a sim-
ple example and using our terminalogy .
Given the system

{ix)=£f{g(x})
{yl=£f1{z)
[x,y}=0}

it can be transformed into

{{yi=figiy))
fyl=£f(z}
ixi_‘l"i=g}
called

by applying a transformation

206

"Wariable Elimination", whose result
is similar to multieguations merging
(it may be implemented in a similar
way, too). Then the £irst bwo mul-
tieguations can be "reduced" by apply-
ing another transformation, called
"Confrontation"

{{yl=£(=z)
f(z)=f(giy))
{ﬂr}'}:ﬂrJ .

The multieguation witn the smallast
gize term has been retained, while the
other has been discarded {(this guaran-
Lees algoricnm's termination) .
Finally, the Erontier of two terms can
be computed by repeatedly applyving the
"Spiitcing” transformacion

{iyi=£(z)
{zl=g(y)
{z.¥vl=F}.

We can conclude that the two algo-
rithms are wvery similar, except for
reduction of terms. Colmerauer's algo-
rithm does not create any new tarm; it
performs reduction using only existing
terms. Morzover it reguires an expli-
cit test for termination based on taa
conparison of the size of Lthe terms
which are reduced.

As a consequence tinls algorithm may
be no longer linear in the number of
function symbols, as clearly depicted
by the following example:

{{x}=tl1
{xi=t2} where:
tl: £ £ L2
ALY PR
tll: i x ® £ :t21
FAAY P
- H “ -
tln: f. -E .
PN 3]
” x /N n+l
b1 W

By applying Confrontaticon and

Eplitting we get
{{H}=tlp{}€]=tllp EXI=tEl}.

By applying Conirontation to the
first two multieguations we get

{{x}=tl,,el=tl,, (x}=t2,},

wnere x is bound to the smaller term.
Splitting of tletl, reguires a number
of comparlsons of t%e order of n, and
the result is

have disjoint

IIx]-tll,{:]-tzl,[z}=£[z,x}].

This system is similar te the ini-
tial one, with tl, substituted for tl
and t2, for t2. We can thus repeatedly
apply The same sequence of transforma-
tions as above, having at each step to
solve the equations tl,=tl,,
£l -tlz,... . AS pointed out Dbefore,
sp%itt:ng of each of these eguations
requires a time proportional to ths
depth of terms, therefore summing up
to a guadratic execution time.
Furtner complexity is added to this
algorithm by the task of selecting the
smallest term.

On the contrary, using Algorithm
UNIFY-1, at each step we go down the
traes just one level and each function
symbol is encountered only once..

5 UNWIFICATION WITH FINITE TERMS

Algorithm UNIFY-1 can easily be
axtended to deal with the standard
unification problem with finite solu-
tions, by checking, after terminaktion,
tnat the Rl part of the system does
not contain any cycle. Checking can
be done with a topological sorting
algorithm, which does not increase
substantially the complexity of the
unification algorithm.

Topological sorting can be embedded
in the unification algorithm by adding
counters to multiegquations, as sug-
gested in [Martellli and Montanari
1982). Since multieguations in RI1
left-hand sides, a
counter ¢an be associated with every
multieguation of Rl, counting the
number of other occurrences in Rl and
in RZ of the variables in the left-
hand side of the associated multiegua-
tien. For instance:

Bl: {{x}=fi{h(v},z,niw)) [1]

{yi=f(z,hfa),2) [1]
{z}=g 3] {(2)
{vi=g [1]
{wl=@ }; 111

R2: {{x,yl=g},

Hote that, using counters reguires
that system Rl has a multieguation for
each different variable it contains,
even if the variable has no binding.

Counters are updated at every step
of the algorithm. Whenever a mul-
tiequation is extracted from R2 in the
COMPACTION phase (step (a)), the asso-
ciated counters are decremented by
one, and if two or more multieguations
are merged together, their counters

are summed up. Instead, a counter is
incremented wisnever an occurrence of
tna associated variables appears in
the common part computed in the REDUC-
TIOn phase (step (b)).

For instance, after the execution
of step (a) and step (b) of the modi-
fied algoritom, counters of system (2)
are updated as follows:

Rl: {[ix,yl=f(z,2,2) (0]
[zi=F L6]
fvli=g [1]
{wisg } (1]

R2: {{z}=hiv),{zl=nla}.{z)=hiw)}.

- A new action must be added to Algo-
ritnm UNIFY-1 in order to detect vari-
ables whicn do noc occur elsewhere and
to mark them as not being part of any
cycle, properly updating counters:

(c) if there is a multieguation S=M in
RlI with size (™M)=l
and with counter equal to zero
and pet yet marked
then for each occurrence of the
variables in M, decrease the
corresponding ceunters and mark
the multisguation.

For instance, applying this action
ko che first multiegquation in the
above system, causes the counter asso-
ciated witn {z} to be decremented by 3
and tne multieguation to be marked
(2.g. witn a star)

Hl: [[x,yi=flz,z,2) [o)*
iz};ﬁ [3]

After few more iterations, wWe get
tne final solved system

Ri: {ix,yi=fi(z,z.,2) |
{zl=n(v) [
fv,wl=a (

RZ: @

= =]
pu———

wnich does not contain any cycle since
all 1its counters have value zero, and
tney are all marked.

As pointed out in the previous sec-
tion, soveral algorithms can be
derived from the above nondeterminis-
tic algorithm, by specifying the order
in which to apply transformations.

In particular, 1if REDUCTION is
delayed wupntil Ekne counter of a mul-
tiequation goes to zero, we obtain the
algorithm of [Martelli and Montanari
1984] whose main feature is tha capa-
bility of detecting cyoles earlier.

207

For instance, let us consider a
slightly modifisd wversion of system
{(2)

Rl: {{x}=f(h(v),z.niw))} [2]
{y}=fiz,n(a(x)),2) [1i]
z}=y (3}
ivi=g¢ [1]
fwh=@ }; 1]
RZ: {(x,yl=g}.

It is easy to see that this systenm
contains 4 cycle. If ne restriction
is imposea on the applicability of
REDUCTICN, the above algorithm with
counters can deteckt the eoycle only
when the final solved system is
obtained, looking at its counters

BEl: {{r:,_y'}'.flz.z;'a’] [1]
[zl={n{v})) (3]
{v,wl=g(x) [1]

R=: .

On the conkrary, Lf REDUCTIONS are
delayed like in [Martelli and Xon-
tanari 1982}, aftor fow steps we get
the system

Bl: ({x,vi=flz,z.2) i1
tzi={h{v),n{g{x)), hi{w)}[3]
iv]=g [1]
{wl=@h; [1i

RZ: @,

At this point, REDUCTION over {z}
is not possible bocause its associated
counter is not zero. WNo other action
is possible; thuz the algorithm can
stop and detect a cycle.

6 DNIFICATION IN LOGIC PROGRAMMING
INTERPRETERS

Algorithms of the previous sections
for the finite and infinite case nave
comparable complexity as long as they
are used to solve a single unification
problem. The great difference between
them becomes apparent when they are
used in successive steps in the imple-
mentation of a legic programming
language interpreter.

Let ug define more precisely the
meaning of logic program computation.

Following [Colmerauer 1982] . a

lc;ic program is defined as & set of
rules of the form:

[= "'tn
where £, tl’ ey tn are terms and n
can be 0.

A computation state is a pair (5,E)
wiere 5 is 4 seguence of terms
SgrBle-nesBpy m>0, and E is & aSystem

208
of multiegquations.

A transition from a state (5,E) to
a new state (8',E'}, by means of a
logic program P, is defined as fol-
lows:

tsn S1sea8_4 JEY =
(Eeevt, S1eee8y CEUf {x)s Esn.t}l

iff there iz a rule t = t. ...t
belonging te P, such that the syatgm
of multiequations EU{{x}l=(s,.,t}]} has =
solution. To avold name conflicts,
variahles in the selected rule must be
appropriately renamad and x must be a
now variable neither contained in E
nor in {iu,t}.

Finully, given an initial state

? E,), & computation of P may be
1

opﬂ:atxﬂnallf as a sequence of
state transitions

[Su.Eu} = {31,31} = .. =} {F;Eni.

The result of the computation is
the solution of the final system E
Since a transition can be applied nnfy
if the resulting system has a solu-
tion, we can assume all systems E to
be in solved form. Then the aalﬁtlan
of E iz computed incrementally by
taklEg. at each step i, a solved sys-
tem E , adding a new multieguation,
and s5I%ing the new system.

It is easy to see that such an
incremental solution process is
eguivalent, as far as complexity is
concerned, to solve the system only at
the last step of the cemputation,
since it is always possible to apply
the same sequence of transformaktions
in both cases. Therefore the complex-
ity of the computation 1is (almost)
linear with the number of function
symbols of all terms of the rules
involved in the computation.

This i8 no longer true if only fin-
ite terms are allowed, since checking
the lack of cycles at every =tep is
more expensive than doing it once at
the end of the computation. For
instance, as pointed out in ([Col-
meraver L%82], the "ocour check™
forces a program for appending two
lists, to visit its first argument at
every step, thus taking a guadratic
time, even if the interpreter uses a
lineac unification algorithm. 2 [=1
known algorithm can do the "occur
check™ incrementally in an efficient
way. Improvements in efficiency are
possible by performing some static
analysis of programs for detecting at

compile time places where loops can
occur, as described for instance in
[Plaisted 19B84].

7 CONCLUSIONS

We have presented a simple abstract
algorithm for unification with infin-
ite terms, and we have shown that very
efficient concrete algorithms (with
almost linsar complexity) can be
derived from it both for infinite and
finite terms. We have alsoc shown that
the algorithm proposed by Colmerauer
for infinite terms is less efficient
than ours, by giving an example where
that algorithm takes a guadratic exe-
cution time.

Finally we have pointed out that
interpreters for logic programming
languages allowing infinite terms can
be much more efficient than inter-
preters for languages with finite
terms only-

The proposed algorithm can be used
to write correct interpreters whose
efficiency is comparable to that of
the incorrect interpreters which use
standard unification algorithms
without “occur check". 0f course,
memory management and Structure shar-
ing problems must be dealt with using
tecniques similar to those used to
implement Prolog interpreters
[Bruynocoghe 1982] [Mellish 1982]. Oux
next efforts will be devoted to these
topics.

REFERENCES

ahe, A.V., Hopcroft, J.E. and Ullman,
J.D. The Design and Analysis of Com-
puter algorithms; B Eiacn-WeEI&y, “Hew
York, lo74.

Bruynooghe, M. The memory management
of PROLOG implementations; 1in Logic

Programming (K.L. Clark and 5-A. Tarn-
lung eds.) , Academic Press, 1982, 83-
o8,

Clocksin, W.F. and Mellish, C.S. Pro-
rammi in Prolog; Springer-Verlag,
1981, .

Colmerauer, h. Prolog and Infinite
Trees; Logic Pr rammi {£.L. Clark
and S-A., Tarnlund eds.), Academic
Press, l1982.

Corbin, J. and Bidoit, M. A Rehabili-
tation of Robinson's Unification Algo-
rithm; in Progc. of the IFIF Sth
Congress, Paris, France, Sept. 19- 23,

19@3.

Fages, F. Hote sur l'unification des
termas de premier ordre finis et
infinis; Rapport LITP 83-29, May 1983,

Fages, F. Formes canonigues dans Lles
alyébres booléennes ot applications a
la demonstration automatigue; Thése de
32ma cycle, Universit® Paris VI, June
1943,

Filgueiras, M. A Proleog interpreter
working with infinite terms; in imple-
mentations of PROLOG (J.A. Campbell
ed.), J.Wwiley and Sons, 1964, Z50-258,

Haridi, 5. and Sahlin, D. BEfficient
inplementation of unification of
cyclic structure; implementations of
PROLOG (J.A. Campbell ed.)., J. WilEF
and Sons, 1984, 234.-249.

Huet, G. Résolution d'éguations dans
les languages d'ordre l,2;...,00.}
These 4'etat, Universite' Paris VII,
1476,

#Martelli, A. and Monkanari, U. An
Efficient Unification Algoritnm; ACH
TOPLAS, 4, 2 (April 1982). —

Mallish, C.5. An Alternative to
Structure Shering 1in the Implementa-
tion of a Prolog Interpreter; in L?gic
?rggramming {k.L. Clark S-A. Tarnlun

a2de,) , Academic Press, 1982, 99-106.

Mukai, K. A Unification Algorithm for
Infinite Treas; in Proc. of the dth
Int. Conf. on Artificial Intelligence;
Katlsrune, W. Germany, B-Lz August
1983,

Paterson, M.5. and Wegnan, M.N. Linear
Unifiecation; J. Comput. Syst. Sci.,
1, 2 (April 1378).

Plaisted, D.A. The occur-chack prob-
lam 1n Prolog; in Proc. of the 1984
Int. Symp. on Legic Programming,
Atlantic City, N.J., Fab. 6-9,1984.

209

