PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1984,
edited by ICOT, © ICOT, 18984

185

A PROCHRAM THRANSFORMATION FROM EQUATIONAL PROGRAMS

INTO LOGIC PROGRAMS

Atsushi TOGASHI and

Shoiehi NOGUCHI

Besearch Institute of Electrical Communication, Tohoku University

#-1-1 HKatahira-cho,

ABSTRACT

In the last years substantial efforts have
been made to develop eguationsal programming
languages snd logic programming languages so
called descriptive languages. Both languages
are based on some mathematical systems and
show certsin similarities each other. This
indicates some possibility of program trans-
formation. As for program transformation, the
equational language concerns with an
algebraic specification for abstract date types
and a recursive program scheme. The trans-
formation provides introduction of notions
such as data absiraction and computation
strategies in a logic programming language.

In this paper we propose a transforma-
tion algorithm from equational programs
written im eguational form into logic
programs. In order to facilitate program
tramsformation we extend the programming
language Prolog which has been used as the
promising language in the literature into &
- logie programming language based on a new
computation model, It is shown that any
equational program is trensformed into an
equal or more powerful logie program. For a
recursive egquational program, there exists a
Horn program with the equivalent computa-
tional power.

1 INTRODUCTION

Descriptive languages for computation
are often orgenized into two types, a logic
programming language and an equational (or
funetienal) programming language. Logic
programming lenguages, such as the Prolog
{Clocksin and Mellish 1981, Kowalski 1979),
are based on the first order predicate logic,
directly c¢oncerned with the reselution
principle introduced by Robinson in (Robinson

Sendail 980 Japan

1965). In the language programs are cXpress-
ed as sentences, their computation process is
deriving successively new subgoals from goals
by the resclution. Solving problems 1s to
show inconsistency of the given goals with
regpect to the programs, contradictory
instances are the results of the computations.
See (Apt and Emden 1982, Clark 1979, Emden
and Kowalski 1976, Hogger 1%81) for a theo-

retical treatment, also refer to (Kowalski
1879y for an application to the artificial
intelligence.

Equational languages arve oriented toward
using equations to specify programs,
however, form computstional point of view
eguations may be thought of as reduetion
rules allowing the reduction of the left-hand
expression to the right-hand expression. In
this way their computstion process is repeat-
edly reducing the given expressions by
applying equations to the normal forms which
can not be reduced any more. These express—
ions are the results of the computations. As
many researchers noticed in (Hoffmann and
O'Donnell 1982, Huet 1580, O'Donnell 1977,
Hosen 1973), not only large parts of LISF in
the resl programming language, but the
lambde calculus, the combinator caleulus and
recursively defined functions in mathematics
may be viewed as the special systems of
equations.

Though these two languages are based
on the slightly different mathematical systems,
they show deep similarity each other. This
indicates certain possibility of program
transformaetion. The equational language is
much concerned with an slgebraic specification
for abstract data types (Goguen et el. 1978,
Guttagy et al, 1878) and a recursive program
gcheme (Arnold and Nivat 1980, Downey snd
Sethi 1976). The transformation provides

186

introductlon of notions such as data
gbatraction and computation strategies in a
logic programming language.

This peper presenis a {ransformation
algorithm from equational programs inte logic
programs. It is shown any equational program
is transformed into an equal or more poweriul
logle program. When we restrict our attention
to recursive eguational programs which are
the generalization of recursive program
schemes any recursive equational program is
gimuiated by some Horn program with the
equivalent computational power. In order to
facilitate program transformation we extend
the programming language Prolog, which was
more popular and investigated by many
researchers, inte & logic programming
language based on a new computational model.
This language iz more sultzble for represen-
tation of knowledge for predicates, and is
oriented to knowledge based programming.

This paper is organized as follows : In
chapter 2 some preliminary definition are
discussed. The f{ormulation of equational and
logic programming languages are described in
chapter 3 sand in chapter 4, respectively.
There some results are alse investigated. In
chapter 5 we propose a transformation algori-
thm and validity of the method is proved.

We believe our paper is the flrst attempt
to clarify relationship among descriptive
languages. We hope that our resulis have
established & footing for further studies of
this field.

2 PRELIMINARY DEFINITIONS

In this chapter we briefly survey some
preliminary definitions which will be wused
throughout this paper. In particular, we state
notlons signatures, terms, substitutions, and
term rewriting systems. See (Goguen et al.
1978, MHuet 1280, Huet oand Oppen 1980,
O'Donnell 1977} for detail discussions.

2.1 Signatures, Terms and Substitutions

It iz assumed that we are given a finite
sat § of sorte, which are the names for the
various data typee under consideration. A
(S-sorted) signoture is an indexed family
{Ey,s} (w,s) g 5#xsof disjoint sets Iy,s of
symbeols, where 5* denotes the set of all
finite sequences on 8 with the null string A

(5 is the set of all non null sequences on
S). A symbol 0l ; is called a function
symbol of sort s witharity w, sometimes
written ¢ ¢ w =-> 8. When w =A , ¢ is called
8 pomoignt For ease of notation, let £ = U{wlﬂ]
Ey,s» and we use ¢ to denote the signature.

Let X = Ogeg¥; be a disjoint union of
denumerable sets x, of variables of sort se S
and fixed throughout this paper. For a
signature £ , I - terms (or terms whenever £ is
cleay from the context) of sort sE 5 are
defined in the recursive way:

(1) %=X iz af-term of sort s;

(2y g : A -= g is af -term of sort s;

(%) I1f ¢: 8L,..,.,8n == @8 iz a function
symbol and ti are I -terms of sorts si,
then o (tl,...,tn) is af ~term of sort s.

The set of allE -terms of sort s is denoted by
T(r.X). . We define T(f,X) as the disjoint
union o} the seis T(EX),; for =5,

Let N* be a set of all strings on the set
H of positive integers with the null string j, .
We ghall call the members of N¥* sosurrencas
and denote them wu, v and w, poessibly with
subscripts, For a E-=term t we denote by
Ocr(t)CM* its set of occurrences and by tiua
the subterm of t at the occurrence u eQer(t).
We say u is the occurrence of the subterm
tfu in t. We use Var(t) to denote a set of
variables sccurring in t, that is, xe Var(t) if
end only if x € X and there exists u e Oer(t)
such that tfu = %, For terms t, t' and u in
Oer(t), wa define t[u <-- t'] as the term t,
in which the subterm t/u at the occurrence u
is repleced by t'.

A substitution is a mapping ¢ from the
set of wvariables into the set of terms such
that 8(x) = x almost everywhere, that is the
domain of ® defined by Dom(8) ={ x | 8(x) #
x} is finite. Here we assume that substitu-
tions are sort-preserving, i.e., all variables
of sort s are mapped into the terms of same
sort. The substitution 8 is extended into the
terms by

Btl,...,tn)) =0 (B(t1),...,8(tn))

where C: s8l,...,8n ——=> 8 is the function
symbol snd 1 are the terms of sorts si.

2.2 Term Rewriting Systems

Definition 1 A term remwiting systemon
a signature I is a finite set R of rewriting
pyles of the form 1 --> r such that Var{l) D
Var(r), where | and r are the E-terms of the
same sort.

R may be applicable to a term t iff
there is an occurrence ue Ocr(t) such that
t/u = B(1) for some rule ! —->r in R and for
some substitution 8. In this case, we say that
the rule 1 --* r is applied to the term t to
obtain the term tlu <-- @(r)]. The choice of
which rules to apply is made non determini-
stic. We write t =& t' to indicate that the
term t' is obtained from the term t by a
gingle application of some rule in R. Let §>1
denote the reflexive and transitive closure of
=x. If 1 53-3 t' holds we say t' is dertvable
from t in R. R may be omitted from =»p and =y
when it is clear from the context. The
derivation relation is characterized in a prootf
system in the following way. See (Huet 1980,
Huet and Hullot 1982, O'Donnell 1977, Rosen
1973) for related discussions.

Proposition 1 Let R be a term rewriting
system on T and t, t° be any E-terms. Then t
%, ' holds if and only if the ordered pair of
the terms t > t' is provable in a proof system
with the following inference rules,

(1) l-->reR (2)
1>r t>t
(3 t>t, t'>t"
t >t
(4) ti » th, g:5l,,..,8n =—=> 8§

U[tl, BE e ptn} E'_ ﬂ{t.l-‘ LR ’t'n]

(5) t>t, 0:X-->T(,X)
to > '8
proof. Both directions can be easily

verified by induction, so we omit the proof.

Remark that the notation t > t' for the
ordered pairs comes from the fact that the
ordered peirs provable in the proof system
are characterized by the partisl ordering
relation on terms. See (Huet 1980, Huet and
Oppen 1880).

187

3 EQUATIONAL PROGRAMS

We formulate an eguationsl program in
the framework of a term rewriting system as
in (Hoffmann &nd ©'Donnell 1982). The
theoretical foundations for computing with
equations are treated in detsil in (Huet 1980,
Huet and Oppen 1980, O'Donnell 1977, Rosen
1974). Hoffmann and O'Donnell (Hoffmann and
O'Donnell 1982) illustrated the usefulness of
eguational programs, and investigated
practical solutions to the preblems involved in
implementing equational programs.

Let T be a (finite) S-sorted signature.
Following (Huet and Hullot 1982) we assume
that the signature I is partitioned as £ = I©
U £9 We shall call the function symbol in E©
the econstructor , and the member in I? the
dafined finotion aymbol |

Definition 2 An equational program on
the signature I is a term rewriting system R
in which each rewriting rule is of the form
F(El,...,En) --> En+l, where F is the defin-
ed function symbel and Ei the arel -terms.

Constructors create conerete data types.
Defined function symbols define some manipu-
lations over the constructed date types; the
meaning of them are described by rewriting
rules. For notational convenience, the const-
ructors are denoted by the lower case letters,
and the defined function symbols by the
capital letters such as F, G, H and so on.
Similarly we use symbols E, Ei to denote
T-terms and t, ti to denote I“terms, called
aomatrustopr term ., constructed only by const-
ructors. Of course, both kinds of ferms
contein variables as constituents.

A certain restriction can be made on the
nature of the rewriting rules to give more
restricted class of eguational programs.

Definition 3 An equationsal program R is
remraive if every rule in R is of the form
F(tl,...,tn) --* E

The recursive equational program can be
viewed ag the generalization of non determini-
stic recursive program scheme in (Arnold and
Mivat 1980).

Let B be an eguational program on g . A

computation from an imput term El 13 a
possibly infinite derivation sequence

188

EQ =R El =2p e =R En e I
The computation successfully termingtes if En
is a construetor term t for seme n > 0, hence
we c¢an neot rewrite En any more by the
definition of equational programs. In this
case, En = t is the result of this computa-
tion. Otherwise the computation fails, i.e., it
terminates at the term E which contains some
defined function symbols or never terminates,

An equational program R

ExnmEIe 1

reversing lists

constructors
nil @ g -3 list;
cons @ item, list --. list;

defined function symbols :
Append : list, list —-7 list;
Rev : list —-> list

rewriting rules :
Append{nil, x) --» %
Append{cons{i,x), y

--> gons(i, Append(x,v))
Rev(nil) --> nil
Revi{cons(i,x))

-= > Append{Rev(x), cons(i,nil})
Rev{Rev(x)) —>x
Append{Append(x,¥), 2)

== Append{x, Append(y,z))
Rev(Append(x,¥))

==>» Append(Rev(y), Rev(x))

What we have defined above is the most
genersl strategy of executing programs. A
more restricted strategy is treated here to be
simulated by logic programs discussed later,
Let R be an equational program. A E-term E'
is derivable from a I-term E in a primitive
execution strategy denoted by E (py = E' if
there exist & rule 1 --> r, an uc-nurmm.ée ue
Ocr(E) and substitution 8 : X -=> T(I ,X)
with the range the =et of only eonstructor
terms such that Efu = #{1) and E[u <--
8(r)] = E'. The computation from E0 in the
this strategy and the result for it are defined
gimilarly to the genersl case.

Coro 1 Let R be an eguational
program and E, E' be p-iferms. E (p) ’-—‘sa E'
holds if and only if E > E' iz provable by
applying the inference rules (1), (2), (3),
(4) mentioned in Proposition 1 together with
the rule,

(5" Es B, 8:X —>T(E5,X%)

E6 > E'9
4 LOGIC PROGRAMS

In the last few years the programming
language Prolog (Apt end Emden 1982, Emden
and Kowalski 1976, Kowalski 1379) based on
the Horn clsuses in the first order logic has
been inereasingly used, due to the possibility
of suitably wusing it as a specification
language (Hogger 1981) and as a practical,
effiient programming language (Clocksin
1981}, In order to facilitate transformation
from equationsl programs into logic programs,
we extend the Prolog into & new logic progra-
mming language to have more than one atoms
in their left-hand sides of the Horm clauses.
Also we introduce inferred wvarisbles which
will be distinguished from fixed wvariables. As
an example, the left distributive law of the
multiplication M{ULT) for the addition A(DD)
can be expressed as

M{x,¥y1,%*u), M{x,v2,*v), A(*u,*v,z)
i= Mix*w,z), ACYL,vE,*w).

This corresponds to the usual distributive law
of the multiplication "." over the addition "+"
written by the equation
x.y1+x.;r,r2=:r., (:.r1+:-'2].

This formula has wore than one atome at the
left-hand side and the variables appearing in
it are partitioned into two kinds of variables.
One is a fixed wvariable such as x or T,
bounded by universal guantifier y from out-
side, the other is an inferred wariable such
as *u or *v, bounded by existential guantifier
3 from inside. The above formula can be
expressed by the usual form such as:

¥y Yly v2,y 2:
du, v : Mix,yl,u), M(x,v2,v), Alu,v,2)
<= Jw o M{x,w,z), Alyl,yZ,w),

This formula asserts a single concept, hence
can not be modified into more than one
definite clauses (Apt and Emden 1882) without
loosing the meaning it has. This kind of
property can be used to simplify subgoals and
speed up its computation. The application of
the sbove property is allowed only to sub-
goals in which there are some stoms identified
with its whole left hand side of the rule by

tweo gorts of substitutions, and results in a
parallel rewriting of atoms. In this way, we
have modified the way subgoals are computed
according to the above extension, so that
properties will be applied to get an intelli-
gont, efficient computation.

A (S-sorted) similapity type is a pair d
= {£%T), where I* is a S-sorted signature
and T is a disjoint unlon of sets T, of
predicate symbols P : w for weS*.

Definition 4 Let d be a similarity type.
(1) An atom is P(tl,...,tn), where P :
sl,...,sn iz the predicate symbol and t
are the terms of sorts si.
(2} A oluster fornula (or oluster) is a
finite set of atoms.

For a cluster M, Var{M) denotes a set of
all variables sppearing in M. There arc two
kinds of varlables, that is ffzed variables and
inferred varisbles, which correspond the
variables bounded by wuniversal guantifier ¥
and by existential quantifier 3, respectively.
We assume that the set Var{d) iz partitioned
into the set FIX(M) of fixed wariables and the
set IMF(M) of inferred wvarisblea. For
simplicity, we will write a eluster CL,...,Ck
rather than {C1,...,Ck}. For this reason,
the order of atoms in the cluster is not
erucial. If x1,...,%m and yl,...,yn are fixed
varisbles and inferred variables of the cluster
M= Cl,...,Ck, we can read it as "for all
x1,...,xm there exist y1,...,yn such that Cl
snd ... and Ck.

Definition 5 A cluster gequent on a
similarity type d is an ordered pair of
clusters of the form M :- N which satisfies
the following two conditions:

{a) Al fixed varisbles appearing in the
right hand side also appear in the left
hand side, i.e., FIX(M)DFIX(N);

(b) there i= no common variable among
FIX{H), INF(M) and INF(N}.

The cluster M is called the eomelusion of the
sequent M :- M; M the premise of it. For a
cluster ¥ = Al,...,Am :- Bl,...,Bn, let
FIX¢Al,...,am) = {=xl,...,xk}, INF(Al,
ceeAm) = {yl,...,vyp}. end INF(BL,...,Bn)
= {gl,...,8q}. The cluster sequent r can be
interpreted as "for 211 xl,....xk; if there
exist z1,..,,2q such that Bl and ... and BEn,
we can assert existence of yl,...,yp such
that Al and ... and Am".

189

Definition 6 A defimite sequent is a
cluster sequent of the form A ;- Bl,...,Bn
guch that INF(A) = 0.

Definite sequents correspond to the definite
clouses. This alternaotive formulation of the
definite clauses derives from the fact that a
universslly quantified implication (¥x) : A<-—-
Bl,...,.Bn is logically eguivalent to the one A
€== (32} : Bl,...,Bn when % does not occur
in A.

Definition 7 A Iogfe progrem on a
pimilarity type 4 i8 a finite set £ of cluster

sequents. If £ consists only of definite
sequents, £ is =aid to be & Homm program .

A goal for a logic program is a cluster.
Goals describe the problems which will be
solved by the execution of programs. In the
procedure interpretation a logle program is a
goal redustion (peplosemant) system 88
discussed in (Kowalski 1979). A computation
(or an execution) of programs is initiated by
giving an input goal. The computation
proceeds by applying some cluster sequents
to derive successive new subgoals. In each
compuiation step some subecluster is selected
from the subgoal and matehed with the left
hand side of some cluster sequent by finding
two kinds of sppropriate substitutions. The
subcluster is then replaced by the right hand
elde of the cluster segquent. The computation
successfully terminates for the input goal if
ihe empiy goal {(terminsl goal) is derived. In
the following, we will fermalize a way goals
are computed according to the extention
mentioned above.

Definition 8 Let £ be a logic program. A
cluster sequent r = Al,...,Am :- Bl,....Bn
in £ isgpplicable to a goal M = C1,...,Ck if
and only if there exist two substitution 8, n
with the conditions

Dom(8) FIK(Al,...,Am),
Domn) INF(CL,...,Ck},

called a matohing and an fnferring substitu-
tion, respectively such that (Cl....,Cm)p =
(Al,...,Am)8 for some subecluster Cl,...,Cm
of C1,..,Ck.

If so, we say r is gppliad to obtain a new
goal N = (Bl,...,Bn)8, (Cm+l,...,Ck)n. The
inferred wvarlables of the newly derived
subgoal N are defined by

190

INF(N) = { x eINF(M) | x¢ Dom(n)
U INF(Bl1,...,Bn)
U{x eVar(Al,...,Am)| x ¢Dom(8)}.

All other varisbles appearing in N sre fixed
variables.

Example 2 Let us consider a logic
program consisting of a single cluster sequent
Al f(x,%v)) = Alglz),*w,x). In order to
distinguish inferred wvoriables with fixed
variables we use a symbol "." in such a way
#yx stands for that x is an inferred variable.
Given a goal A(h(x,*u),*u,*y), B(*v,x) ¢ is
applicable to it, and we obtsin the new goal
Alg(Fz),*w, hix,*2)), B{I(h{x,*s),*w),x) as
the result of application.

| LI | !
Alh(x,*u),%,*y), B(*y,x)

Alx, , [(x,*v)) = A(g(z),*w,x)
[i "y

A(g(*e),*w,hix,*2)), BIE(h(x,%2),*w),x)
Fig.l An application of a cluster sequent

For goals M, N M =>., N indicates that
W is obtained from M by a single application
of some sequent in £. We may write M =T N
to specify the used inferring substitution n. &
denctes the rveflexive, transitive closure of
=», If M NN holds, we say M is reducible
to N, where n is the composition of wused
inferring substitutions.

Proposition 2 Let £ be a logic program
and B, N be goals. For any substitutiong
with the domsin contasined by INF(M), we
have Mg =>" ¥ implies M =351 N,

Corollary £ Under the same condition as
Proposition 2 it follows that Mz =>" N implies
mELIN M, where é}i is the transitive closure
of = >o

Converzely, we can easily verify the
follewing Proposition by Iinduction on the
length of reductions.

Proposition 3 Mn 2> N follows from the
condition M =M N for all goals M, N.

Let £ be a logie program. A compubation
from & goal M is a reduction sequence

M=o =>"1 M =>"2 .., .,

A computation susesssfully termingtes if Mn
iz an emply goal, denoted by e, for some n »
0, where the empty goal s an empty cluster.
In this case, the composition n = nl..."n is
the ansver substitution and Mn is the result
for the computation.

5 A TRANSFORMATION ALGORITHM

To transform an equational program into
a logic program, at first, we shsall show a
method for transforming a given I-term E into
the ecluster C(E) and the cutput term O(E)
associated with E.

Let £ be a sighature for egquational
programs. The corresponding similarity type
d = (I5 T') for logic programs is specified in
the following way:

{a) The set L% is identical to the sct of
constructors inf ;

{b) The set T is defined by

{FP:sl..“.an.al F:gl,...,sn =-=> seE4},

Algorithm A We associate a cluster C(E)
and an output term O(E) with a f-term E by
structural induction on E. For a cluster C(E)
the fixed wvarisbles are ones which belong to
Var(E) and newly introduced wvarisbles are
the inferred wvariables.

(1) If E is a variable or constant, define
C(E) = &; OQ(E) = E.

(2) Suppose E is of the form o(El,...,En).
By induction hypothesis, it is assumed that
the clusters C{Fi)} and the output terms O(Ei)
are constructed in sueh a way that the newly
introduced variables are standardized apart
one another.

(a) 1If o is & constructor [, define

C{El},...,C{En);
f(O(EL),...,0(En)).

C(E)
O(E)

o

(b)Y If T is a defined funection symbol F,

C(E) = C(EL),...,C(En),
F-g[ﬂ[EI]....,U{En},ﬂF};
G(E] = 'Fi

where Fp is the predicate symbol correspond-
ing to F and *y is the new wvarlable never
appears in C(E) for all 1 > i> n.

Example 3 Let us consider a p-term

E = f(F{G(x), g(a)), H{G(x))),

where f, g, a are the constructors (a is the
constent) and ¥, G, H are the defined
function symbols with arbitrary fypes. By
applying Algorithm A to this f -term we obtsin
the cluster C(E) and the output term O(E).

C(E) = Gplx,*y3), Fp(*y3,g(a),*y1),
Gplx,*y4), Hp(*y4,%y2)
O(E) = f(*yl, *v2).

Fig.2 A tree representing ary -term E.

Ey using Algorithm A a transformation
algorithm from equational programs into logie
programs is described in the following way:

Algorithm B A Transformation Algorithm

Let R be a given equational program. We
translate each rewriting rule F(EL,...,En)
==sE' in E into a cluster sequent io
construct the corrvesponding logic program.

(i) Constitute the clusters and the output
terms for both sides of the rule by using
Algorithm A, During execution of it the newly
defined wvariables are standardized apart in
both sides. (Let note that the output term of
the left hand =ide must be & variable.)

(ii) The trsnsformed cluster sequent is
defined by

C(El}),...,C(En),
F (O(El},...,O(En),O(E"}) := C(E").

The set of fixed varisbles of it is specified
by Var(F(El,....En)) U Var{O(E')), and the
others are inferred varisbles.

Example 4 If we apply Algorithm B to
the equational program in Example 1, we have
obtained the following logie program.

APPEND(nil, x, x) :- &
APPEND(cons(i,x), ¥, cons(i,z))

= APPEND(x,¥.%)
APPEMD (x,v,%u), APPEND (*u,z,w)

i= APPENDMy,.2,*v), APPEND(x,*v,w)

191

REV{nil, nil) :- e
REV(eons(i,x), z)
- REVix, *v),

APPEND(*y, cons(i,nil),z)
REV(x,*y), REV(*v.x) :- &
APPEND(x,v,*w), REV{(*w,z)

= REViy,*v), REV(x,*u),
APPEND(*v,*u,z)

Proposition 4 1f B s a recursive
equational program, the transformed logic

program is a Horn program.

To investigate the relationship between
equational programs and the translated logic
programs, we shall consider the clusters and
the ouiput terms associzted with I -terms by
Algorithm A. In Algorithm A we constructed a
cluster C(E) and an output term O(E) for
each I-term E. Similar to clusters, we parti-
fioned the set Var{O(E)) into fixed wariables
and inferrad wvariables. Here the fixed wvari-
ables are the ones whieh belong to Var(E).
For constructor terms t, t' with wvariables
partitioned t i= a varimmt of t' if t differs
from t' at most in the names of its inferred
varigbles. A variant of a cluster is defined
similar to the variant of the constructor term.

Theorem 1 TLet B be an equational
program and £ the transformed logic program
from R. For any E -terms E, E' if E() s
in the equational program R, then there exist
some wvariants M' and t' of C(E'"Y and O(E"),
respectively, such that C(E) 2>7 M' in the
logiec preogram £ and O(E)n = t' for some
inferring substitution n.

proof. By Corollary 1 the proof consists
of exemining each of the rules of inference.
As for the rules of inference (13, (2) and (3)
the assertion of the theorem is obviously clear
from the transformation algorithm. So we
diseuse only the inference rules (4) and (5').

for the inference rule (4) : Suppose that
the given terms are of the form

E ='|:I{E1|...|En},, Ef ’:u(E.Iji--ihjEln}

for some function symbol o. By structural
induction we can assume that

C(E) & Mi My, OCEINi = 14

for some variants MY, t'i of C(E'), O(EW),
and for some inferring substitutionsni for all

192

1 <1 < n. Without loss of generality we can
impose the conditions on the clusters and the
output terms in such a way that

INF(Mi) AINE(B]) = B, INF(t) AINF(H) = 0;
INF(M) AINE('Y) = 8; INFQ(H) AINF(EY) = @

for all i # §, where Mi = C(Ei}, and ti =
O(Ei). There are two possibilities for o as the
function symbaol.

(a) If o iz a constructor f, the assoeciated
clusters C(E), C(E') and the ouiput terms
O(E), O(E"} must be of the form

C(E) = C{El),...,C(E);

C{(E" = C(E'1),...,C(E"n),
and

O(E) = f(0O(E1),...,O(En));

O(E") = [(O(E"1),...,0(E'm)),

respectively. Let us define an inferring
substitution n as the composition n =nl,..nn.
By the assumption described above we have

C(E) = C(El]... »C(En)
1 M'1,C(E2),...,C(En)

Ill-

> Tp M'1,M'2,...,M'n,

il

and

O(E) = f{O(EL),...,O(En) ML, . Nn
f{O(ELYM ,O(E2), ... JO(En)INg, . Nn
f(£"1,0(E2),...,0(En)n2..."nn

I n

f{tlllg. (] .t'l‘l}

which are the wariants of C({E') and O(E"},
respectively.

(b) U0 is a defined function symbol F,
then the associated clusters and the output
terms are of the form

C(E) = C(El}!“"E{En}I
Fp(O(EL),...,0(En),*y)
C(E" = E[E'l}....,C{E'n},
FplO(E'1),...,0(En),*yv")
and
O(E) = *y, Q(E") = *y'

where H. is the predicate symbol correspond-
ing to the defined function symbol F and *y,
*y' are the new inferred wariables. As in case
(a), we can easily verifly that

C(E) 2>" 1" and O(E) =

for some warlants M', t' of C(E"), O(E"),
respectively, and for some inferring
substitution n, so we omit the proof of them.

for inference rule (5")
given I -terms E, E' suppose that

Finally for

C(E) =>"1 M1 => ,,, => Mk-1=>"km,
and

O(EmMLl,...nk = ¢

for some wariants B', t' of C(E'), O(E"),
respectively. Let 8 : X --3 T(I%X) be any
substitution with the range the set of const-
ructor terms. Define inferring substitutions i
=niB, 1 < i< n, which mep the inferred
variables *y ¢ Dom(ni) to the terms (*yyif. It
is obviously clear by the assumption that

C(E®) =>51 => .., =>Fk wre,

and

O(E#)EL...Kk = E'6.

Hence the proof is complete.

Corollary 3 Let B be nE*term and t a
constructor term. If E =» t in the
equational program R, then E{E} £57 & and
O(E)n=t in the corresponding logic program

£ for some inferring substitution n.

Without loss of generality we can assume
that input terms in equational programs ave of
the form F(tl,...,tn), where ti are the
constructor terms. By Proposition 3 and
Corollary 3 we have

®
Corollary 4 If F{tl,...,‘tn) =» t in an
Equntiunal program R, then F,(tl,...,tn,t)

=s& in the corresponding lug:c program,

These results indicate that in a primitive
execution strategy any equational program is
transformed into an eqgual or more powerful
logic program. On the other hand, for a
recursive equational program, we can
translate inte a logic program with the
equivelent computation power.

Let W denote a set of ali atoms
(vontaining wariables) on a similarity type d.
With a Horn program £ we associate a mapping
T over the power set P(W) of W.

Definition 9 Given s Horn program £, &
mapping T over P(W) associated with £ is
defined as follows : For any subset VW

and for any definite sequent in £ BO :-
Bl,...,Bn, if there exists a substitution 8
such that Bi# V for all i, 1 <i < n, then we
have BO# eT(V).

By definition T is the continuous mapping
over P{W) with the partisl order set-theoretic
inclusion among subsets on W. 5o T has the
unique fized peint lip(&) like as the result in
(Emden and Kowalski 19763, In fact, Ifp(f)
turns out to be Mp(L) = Uysy T(#), where @
is the empty subset of W, The following the
slight modification of the result in (Apt and
Emden 1982),

Theorem 2 Let £ be a Horn program and
M a goal., If there Is & successfully
terminating computation from M with an
answer substitution n, then An = 1fp(%) for
every atomic cluster A in M.

proof. Let M0 =™ m1 => ... =>"k Mk
be a successful computation from M with an
answer substitution n. Note that M0 = M, Mk
= ¢ gnd n=nl...nk. To prove the theorem
we show by induetion on i > 1 that Ank-i+l
...nke T8y for any atomic A in Mik-i,

If i =1, then Mk-1 consists of a single
atomic cluster, say A. By the assumption it
follows that Ank = BOF for some definite
geqgquent B0 :- e in £ and for some matching
gubstitution #. Henee Anke T(R) by the
definition of T. This iz the induction basis.

Let i » 1. Buppose that Ank-itl ...MkE
T (#) for any atomic cluster A in Mk-i. Let

Mk-i-1 = €1,...,Cf,...,Cm
Mk-1 = (Cl,...,Ci-LInk-i,
(B1,...,Bn)8,
(Cj*1,...,Cm)Nk-i

for some definite sequent BO :- Bl,...,Bn in
£ and for some matching substitution 8, where
Cink-i = BO# holds. Let A be any satomie
cluster in Mk-i-1. 1f A # Cj, then Ank-i is in
Mk-i. So by inductlon hypothesis we have
Ark=i nk-i+1 ,..nke TH(9) < T (@) since T
is monotonic. If A = Cj, them by induction
hypothesis we have Ba®k-it1 ... N ke Ti(p)
for all 1 £ g < n. Seo that mk-iNk-i+l ... Nk
= BOO nk-in k-i+1 ... Nk e T by the
definition of T.

Theoram 3 Let B be a recursive egua-
tional program and £ be the translated Horn

(pl

193

k]
program from R. Then F(tl,....,tn) (p) =
tn+l for all atoms Fpttl,...,tnﬂj in Mp{L}.

proof. We show by induction on 1> 1
that F(tl,...,tn) ;) 3> tn+l in R for all
Fp(tl,...,tn+1) e T (9).

If i = 1, then Fp(tl,...,tn¥l) =

FP{ql,...,qn+l}H for some definite sequent

Felgl, ...,gn+l)} - & and substitution @.
This sequent corresponds to the rewriting
rule F(gl,...,gn) == gn+l by the

transformation algerithm. 5o we have

F{tl,...,tn) = F{glk,...,qnd)
(p) =3 in+l

by applving the rule Figl,...,qn) -—>qn+l
with the substitution 8.

N Let i > 1, Suppose that F(tl,...,tn)

=3 tn+l for all atoms I (t1,...,tn,tn+l)

e THP). Let K (tl,...,tn,tn+l) be any atom
in Tit}(g). By definition of T there is a
definite sequent B0 :- Bl,...,Bm in £ such
that Fp(tl,...,tn,tn¥l) = B08, BAe Ti(d), 1
< 3 2 m for some substitution B, Let
Fi{gl,...,qn} --> E be the rewriting rule from
which the definite sequent BO :- Bl,...,Bm
is obtained. By applying rule Figl,...,an) -+
E with the substitution 8 to the E -term
F{tl,...,tn), ‘we can derive a E-term Ef as a
result. To prove Theorem it suffices to show
that for any subterm G(El,...,Ek) of EB8,
where G is the defined function symbol, if
Gplpl,...,pk,pk+l) is the corresponding atom
which belongs R te (Bl,...,Bm)8, then
G(EL,...,Ek) (py=> phk+l follows from Ej
(pf—"' pi. 1 < i < k. This can be easily
verified by using induetion hypothesis. So we
omit the details.

We obtain the following theorem for
recursive eguational programs from Corollary
4, Theorem 2, and Theorem 3.

Theorem 4 Let R be a recursive
eguational program and £ the translated Horn
program f{rom R. For any I-term F(tl,...in)
and for any constructor term t the next two
conditions are equivalent.

(1) There is a successful computation of the
input term F(tl,...tn) with the result t
in the equational program R :

F(tl,....tn) (p) 2 t.
{2} There is a successful computation of the

194

goal F (tl,...,tn,t) i:ri the logic program
£ : FP[tl,...,tn,t} => a,

6 CONCLUDING REMAREKS
To introduce notions data abstraction

and efficlent computation strategies into logic
programs we have proposed a transformation

algorithm from equational programs into logic

programs. We believe that the results of this
paper clarify relationship between eguational
programs and logic programs, in particular
recursive equational programs and Horn

programs.

We could not show that any eguational
program was transformed into an eguivalent
logic program. However, we expect that every
equational program is simulated by szome logic
program with the equivalent ecomputational
power. We hope that our proposal has
established a new path to the further study
of this field,

REFERENCES

Apt,K.R., and Van Emden,M.H.: Contribu-
tions to the theory of logic programming,
J.ACM, 29, pp. 841-862 (1982),

Arnold,A., and Nivat,M.: Formal computations
of non deterministic recursive program
schemes, Mathematical Sysiems Theory, 13,
pp-219-236 (19805,

Clark,K.L,: Predicate logic as a computational
formalism, Research Report, Department of
Computing, Imperial College, London (1979),

Clocksin,W.F., and Mellish,C.8.: Programm-
ing in Prolog, Springer-Verlag (1981).
Downey ,P.J., and Sethi,R.: Correct computa-
tion rules for recursive language, SIAM J,
Comput., 5, pp.3T8-401 (1976).

Van Emden,M.H., and Kowalski,R.A.: The
semantics of predicate logics = 2 programm-
ing language. J.ACM, 23, pp.733-742 (1976).

Goguen,J.A., Thatcher,J.W., and Wagner,
E.G.: An initial algebra approach to the
specification, correctness, and implementation
of abstract data types, in Current Trends in
Progremming Methodology, 4, ed. Yeh,R.,
Prentice-Hgall, pp.80-149 (1978)

Guttag,d,, Horowitz,E., and Musser,D.R.:
The design of data type specifications, in
Current Trends in Programming Methodology,
4, ed, Yeh,R., Prentice-Hall,pp.60-79 (1978),

Hoffmann,C.M., and O'Donnell,i,].: Prog-
ramming with equations, ACM Trans. on
Prog. Lang. and Sys., 4, pp.83-112 (1982).

Hogger,C.J.: Derivation of logic programs,
J4.ACM, 28, pp. 372-382 (1981).

Huet,G.: Confluent reduetions Abstraect
properties and applications to term rewriting
gystems, J.ACM, 27, pp. TH7-821 (1980).

Huet,G., and Hullot,i.M.: Proofs by induc-
tion in equational theories with constructors,
JC85, 25, pp.239-266 (1982).

Huet,G., and Oppen,D.C.: Equations and
rewrite rules. in Formal Language Theory,
Academic Press, pp.349-405 (1880).

Kowalski,R.A.: Logic for problem solving,
North-Holland (18793,

0’'Donnell,M.J.: Computing in systems descri-
bed by equations, Lec. Notes in Comput.
Sei., NO 58 (1977).

Robinson,J.A.: A machine-oriented logie
based on the resclution prineciple, J.ACM, 12,
pp.23-41 (1965).

BRosen,B.K. : Tree-manipulating systems and
Church-HRosser theorems , J.ACM, 20,
pp.160-187 (1973).

