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ABSTRACT

Incorporating equality into the upification process
has added great power to automated theorem pro-
vers. We see a similar trend in logic programming
where a number of languages are proposed with
specialized or extended unification algorithms.
There is a need to give a logieal basis to these
languages. We presenl here a general framework
for logic programming with definite clavses, equal-
ity thecries and geperalized unification. The clas-
sic results for definite clause loglc programs are
extended in a simple and natural manner. The
extension of the soundpess and completeness of the
pegation-as-failure rule for complete logic pro-
grams is conceptoally more delicate and represents
the main result of this paper.

1 INTRODUCTION

In  this paper, we consider generalized
unification (e.g. Siekmann and Szabo 1082}, ie.
unification of terms in eguality theories, in the
framework of logie programming, The theoretical
foundation of incorporating equality into the
unification process of theorem-proving was given
by (Plotkin 1972). The major result here was that
for a set of clauses augmented with an equational
theory, one can work on the clauses alone and yet
bave a complete inference system in a theorem-
prover using a generalized unification algorithm,
which respects the equational theory in question,
and the usual reselulion and paramodulation
inference rules. As argued in both the above men-
tioned papers and (ICOT 1984), the study of gen-
eralized unification can have a tremendous practi-
cal significance. Our aims here are fo present the
counterpart of such results for logic programming,
in particular for complete logic programs.

1t is well-known that by restricting the logic
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to definite clauses, we can have an elegant seman-
ties for the resulting programming language (Van
Emden and Kowalski 1976, Apt and van Emden
1982, Lassez and Maher 10884); furthermore, indica-
tions are thal appropriate logic programming sys-
tems can be practically eflicient (e.g. the various
PROLOGs). In this paper, we show that the main
desirable results for logie programming continue to
hold in a more general framework of eguality for-
mulas in logic programs and generalized unification
in the inference system. Thus this paper provides
theoretical foundations for works such as those of
{Kornfeld 1983) on equality in logie programs, and
is relevant o works on functional programming in
logic programming such as (Kabn 1981, Subrah-
manyam and You 1984). Furthermore, the work
of (Hansson and Haridi 1081) and (van Emden and
Lloyd 1984) on wvarious soundness results falls
within this general framework which ean be used
o address the issues of completeness and negation
as failore for Prolog IT (Jaffar et al 1984).

The main result however concerns complete
logie programs. A promising approach toward
handling the assertion of negative lzets in logic
programming is in using the concept of complete
logic programs (Clark 1978, Apt and van Emden
1082, Jaffar et al 1983). A particular attraction in
the present efforts is that results on complete logie
programs are assoclated with implementations of
standard logic programs, That is, we gain addi-
tional expressive power for no additional cost.

One interesting (and indeed crucial as far as
the present results are concerned) aspect of com-
pleted logic programs is the equality axioms
embedded. In (Clark 1978) and (Jaffar et al 1983)
these axioms enforee what is essentially, but not
only, the Herbrand interpretations. These axioms
are intimately connected with ihe standard
unification algorithm which corresponds to syntac-
tic equality. Upon close inspection one sees that
these axioms are used to state explicitly those pro-
perties which are already built into the unification
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algorithm.

Here we consider complete logie programs
ineorporating equality axioms of the form of
definite clauses. We show that a logie program-
ming system (for the corresponding standard pro-
gram) using appropriate generalized unification is a
sound and complete inference mechanism for the
complete program. In particular, the negation-zs-
failure rule in this genmeral framework remains
sound and complete.

The paper is organized as follows, In the next
section we generalize the theory of definite clause
logie programs whose equality theory is based on
syntactic identity to eater for programs with a
class of equality theories. In section 3 we develop
a theory of complete logic programs and
unification-complete equality theories. This con-
trasis with present results which are restrictive in
that complete programs are defined incorporating
equality axioms whith enforce interpretetions
which are essentially Herbrand ones.

2 LOGIC PROGRAMMING WITH EQUALITY
AND GENERALIZED UNIFICATION

We use the symbols V, £ and 11 to denote the
sets of variables, function symbols and non-logical
predicate symbols respectively. Thus the latter set
does not contain the symbol =. +{L) and A% U
V) denote respectively the ground terms and the
terms possibly containing wvariables. Throughout
this paper we follow (Shoenfield 1067) for our
mathematical logie terminology.

A definite elause logic program is defined in
the usual manner, i.e. a finite set of definite
clauses (van Emden and Kowalski 1076} Note
that there are no = symbols in definite clauses. In
this paper, we also consider definite clause equality
theories. As usual, equations are of the form s = t
where s and t are terms over L U V). A definite
equalily clause iz of the form

ee, 0,8

where m > 0 and all the atoms therein are equa-
tions. As usual,” variables in definite equality
clauses are implicitly universally quantified. We
define & definite clause equality theory to be a pos-
gibly infinite set of definite equality clauses. See
(Selman 1972) for some properties of definite

clause equality theories. Finally, we define a lagie
pregram to be a pair (P, E) where P is a definite
¢lause logic program and E » definite clause equal-
ity theory,

Generalized unification is defined here with
respect to a definite clause equality theory E. Our
definitions below are compatible with those in the
literature (e.g. Huet and Oppen 1880, Siekmann
and Szabo 1082). (However, such works usually
consider only equational theories, i.e. universal elo-
sures of equations.) A substitution is defined to be
& mapping from the set of variables V into the set
of terms /(X U V). In what follows we sometimes
{2} use obvious generalizations of substitutions to
maps from terms into terms, and (b) speak of sub-
stitutions as equations, e.g. the substitution {xft,
y/u} can be rezarded as the set of equations {x =
t,y = u}. An E-unifier for two terms s and t is a
substitution # such that Ef= sf = t#.

We consider next the semantics of logic pro-
grams. As mentioned earlier, definite clause pro-
grams have an elegant formal semsantics. The
major reason for this is the existence of a canonical
class of interpretations, namely the Herbrand ones,
for the elauses. This follows from

Py iff Plzrfﬂlp

where P is a definite clause logic program, p an
atom and where =/ denotes logical implication in
the context of a fixed domain and functional
assignment, in this case, D is the Herbrand
universe and functional assiznment. This means
that logical inferenee and refutations cam be
obtained within the purely syntactic framework of
Herbrand  interpretations.  Furthermore, the
existence of a least model for definite clauses pro-
vides a rigorous and simple declarative semantics
for the corresponding programs (van Emden and
Kowalski 1976).

Consider now our logic programs (P, E} which
contain equality theories. Here also we have a
canonical class of interpretations. Let #T)/R
denote the quotient of 7{E) by the congruence rela-
tion R. Thus the functional assignment is given
by f{[t,], ..., [t]) = [t ..., t )] for all n-ary { in
S. It is well-known (see e.g. Loveland 1978) that

(P, E)=p iff (P, E”=s{2}ﬂt pforall R
where p is an atom, possibly an equation. What

we require however, is a fxed domain and fune-
tional assignment, that is, a canonical congruence



relation R for a given program (P, E). Clearly the
only relations & we need consider are given by the
models of E. However, there is in generzl more
than one medel of E. The problem then, is to
select & model which is representative of this col-
lection. We prove in the lemma below that a least
such Tt exists. This then gives us Theorem 1, Le.
R provides the desired canonical class of interpre-
tations. This is in perfect analogy with canonical-
ity of least models of definite clause programs.

Lemma I: There exists a finest Y-congruence over
AL generated by each definite clause equality
theory E.

Proof. Consider models of E over #E), and for
our purposes here, a model is a set of pairs. Sup-
pose now that I is the intersection of a set of
models of E. If I is not a model itself, then some
ground instance of a clause in E, say e «— ey, ...,
e, is falsified by 1. This means that e is not in I
and e, ..., &, are in I, contradieting the fact that
e is in the models of the set in question. The
finest E-congruence then is given by the intersec-
tion of all models of E, with the cbvious functional
assignment such that f{[t,], ... , [t]) = [f(t,, ...,
t.)] for all n-ary fin E. E

Although we consider only definite clause
equality theories B in this section, all the results
below continue to hold for any open equality
theary which has o finest E-conpruence.

Let RO be the finest D-congruence generated
by E.

Theorem 1. (F,E)=p iff (P, E)l= g g, p-

FProof. From the above remarks, it sullices to
prove that (P, E) l=ﬂ[3]'ﬁ‘ﬂ p ifl (P, E} 'Zfﬁﬂilf"ﬂ p for
all R. The if part is trivial; consider the other
part. For some R, let T be any model over fE)/R
for [P, E) such that p is false. Conslruct the fol-
lowing model J over fX)/R0O by defining that
q([tlpo) 15 true in J iff qf[t]g) true in I for all n-ary
predicates symbol q. This is well-defined because
RO is finer than B. That I is indeed a model, in
which p is false, is now easy to see, I

We now have the justification of working in a
fixed domain. That is to say, we have that there
is a canonical domain corresponding to a logic pro-
gram, namely fI)/R0 where RO is the finest T-
congruence over 71E) generated by E. We hen-
ceforth may write #{Z)/E for 7{E)/R0 for any open
equality theory E which has a finest E-congruence
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R0.

Let t denote a sequence of terms ty, ty, .., b,
n = 0. We now give definitions with respect to a
given logic program (P, E). The E-base is U{p(d):
d € (f{E)/E)"} over all n-ary predicate symbols p.
An E-interpretotion [ is a subset of the E-base.
We write [s] to denote the element in 7{E)/E assig-
ned to the ground term s.  Similarly, ﬁ.] is a
element of ({E)/E)" and [p(t)] is an element of the
E-base. Where 5 is a set of ground terms, [5]
denotes {[s]: s € 5}.

We now define the appropriate generalizations
ol derivation sequences success and finite failure
sets for our logic programs. We point out here
that while these sets are defined in an operational
manner, we do not address in this paper the issue
of corresponding  computational  methods
implementing them. In what follows, we write ©
=utomean t, =0, AU =t A .. AL = 1.
Thus we say t E-unifies with 1 to mean that E|=
(t, =wu A ..At, =) Weobserve here that an
immediate consequence of Theorem 1 is that 1 E-
unifies with s iff 5] = [t].

For notational eonvenience, we assume that
the variables in V are not subscripted. A (P, E}-
derivation sequence is a (finite or infinite) sequence
of triples <G, -Gi, f>,i=0, 1, ... such that (a)
G, is of the form B,, ... , B wherem > 0 and
each Ej is an atorn, for all 1 < j < m, (b) Ef:i isa
list of m clauses

AW .—pf ... DM

A® DA - DIE’]'

AW Do), -, Do

where each elause above is a elause from P with
variables renamed in that they are now subscrip-
ted with numbers never before used in subscripling
in any G, where j < i, (c) 6. is an E-unifier of (B,

., B_yand (AW, .., Al™), and (d) G, is
(D, -~ D), --- D, --- D=y

A derivation sequence is findlely foiled with
length i if & cannot be formed, that is, (B, ...,

B_) and (AU, .., Ai™) do not E-unify. A deriva-
tion sequence is swecessful if some G, is empty (ie.
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m = ). Mote that & derivation sequence is either
suceessful, finitely failed or infinite.

The following defines the success, finite failure
and general failure sets, denoted 53, FF and GF
respectively, for a given logie program (P, E).

SS(P, E) = {p(3): % is ground and
there exists a suecessful (P, E}-derivation
sequence of pfs)}

FF(P, E) = {p(5): 5 is ground and
there exists a number n such that
all (P, E)-derivation sequences of p(s) are
finitely failed with length < n}

GF(P, E} = {p(5): 5 is ground and

all (P, E}-derivation sequences of p(s) are

finitely failed}
Thus these definitions relate closely to resolution-
like implementations of logic programming sys-
tems. It is necessary for us to consider the set GF
because in general there is a ground atom which
may not have ap infinite derivation sequence and
yet there is mo number n such that all derivation
sequences of this atom are finitely failed with
length < n. Thiz peesibility can arise becsuse E
can be such that there is an infinite set of maxi-
mally general F-unifiers for some pair of terms s
and t. However, if E is such that for all pairs of
terms s and t, there is a fnite set of maximally
general unifiers which subsume all the E-unifiers of
g and t, then GF is identical to FF.

In the standard framework, the success and
finite failure sets have also been defined indue-
tively. We give the appropriate generalizations
here.

P E)=0

55,, (P, E) = {p(t): t is ground and there is
a ground instance of & clause in P
p(u) ~ By, ... , B
such that t E-unifies with o, and
B, €SS(P,E)forall1 <k < m}

SS(P, E) ={J=, S5,(P, E)

FF,(P, E) = {}
FF;, (P, E) = {p(t): T is ground, and
for each ground instance of a clanse in P
p(u) «~ B, ..., B
either t does not E-unify with T, or
B, € FF(P, E) for some 1 < k < m}

FF(P,E) = =, FF,(P,E)

The proof of the following proposition is long
but follows lines similar to the standard case and
is therefore omitted.

Propogilion 1.

(8} The two definitions of S5(F, E) define the
same set.

(b) The two definitions of FF(P, E) define the
same aef,

One therefore might suspect that a correspon-
ding (transfinite) inductive definition can he made
for the set GF(P, E). I o« and # denote not neces-
sarily finite ordinals, then one could try:

GF (P, E) = {}
GF_[P, E) =
if [ #£ 0 and « is not a limit ordinal) then
{pit): t is ground, and
for each ground instance of a clause in P
plu) — E-11 ol E'm
either t does not E-unify with T, or
B, € GF_ (P, E) for some 1 < k < m}
elge
U s GF4FP, E)

GF(F, E) is such that A € GF(P, E} ilf A € GF_
iP, E} for some ordinal c.

Unfortunately, one ean show that this
definition iz nol equivalent to the above Thus
while we may use either one of the deflinitions for
85 and FF, we have only one definition of GF in
this paper. The problem of finding an inductive
definition for GF(P, E) remains.

As in (van Emden and Kowalski 1976) we
make use of & function T in which terms most of
the fundamental results can be framed. In the
definition below, E denotes any open equality
theory which has a finest congruence. T[P E) is a

function from and into E-interpretations. '



Tpgll = {p(d): there is
a ground instance of a clause in P
p{) By, .., B,

such that [5] = d and
BJelforl <k < m}

We are now ip a position to extend the classic
results of standard logic programming theory.
Sinee we have a canonieal domain (ef. Theorem 1)
for a given program (F, E), the proofs of the lem-
mas leading to Theorem 2 and the theorem itself
are simple extensions of their counterparts in the
standard theory. Theorems 3 and 4 follow from
the various lemmas and Proposition 1. The main
new concept to be found in the lemmas below is
generalized unification. Below we write I for some
E-interpretation of (P, E), and for brevity, we
sometimes write T, 35 and FF for T{P.. gy s8(P, E)

and FF(P, E) respectively.
Lemma 2. T[F, E) is continuous.
Lemma 8. Lmodels (P, E}ill Ty (1) © L

Lemma . For alli = 0,
(a) p(1) € 85, i [p(V)] € [35].
(b) p(t) € FF, iff [p{t)] € |FF5|.

We write Ttw for |J %2, TY({}), and T|w for
= TiE-base). Using appropriste fxpoint
Lheorems (see e.p. Lassez et al 1982), we have,
from lemma 2, that Tiw is the least Gxpoint of T
and, from lemma 3, that Tiw iz the least model of
(P, E), similarly to the standard case (ven Emden
and Kowalski 1976). Thus

Theorem £ The least model of (P, E) is egual to
the least fixpoint of Typ 4.

One more characterization of Tlw is given by

Lemma 5. Tpp pylw = [S8(P, E]].

Proof. Let Tti denote TH{}). We show [$5] =
Tti for all > 0 by induction; the lemma then fol-
lows. The base case i = 0 iz trivially proved.
MNow
88,,,1 = {lp{¥): pl1) € 58,,,),
== {[p(t)]: t is ground and

there is a ground instance of 2 clause in P

p(u) «~ B,, ..., B,

such that t E-unifies with %, and

B e85 foralll <k < m}
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by the definition of 55, |
= {[p(t)}: t is ground and
there is a ground instance of a clause in P
Pr“] - Bl::"- 7 Bm
such that [t| = [u], and
[B,) €[8S] foralll <k < m},

by Theorem 1 and lemma 4{a)

= T([8S]),
by the definition of T
= T(Tti), ‘ ,
by the induction hypothesis
= Tti+l. §

The following theorem establishes the sound-
ness and completeness of a proofl strategy based on
{P, E}-derivation sequences.

Theorem 8. 11 p(t) is a ground atom
(P, E)l= pft) iff pit) € SS(F, E)
Finally we have a dual result for finite [ailure.
Theorem 4. If p(t) is a ground atom
p(t) € FF(P, E) iff [p(t)] € T glw.

3 COMPLETE LOGIC PROGRAMS WITH
EQUALITY THEORIES

As mentioned before, generalized unification is
usually defined over an equational theory E, iLe. a
get of open equations in some fixed alphabet E.
Two terms are then said to be E-unifiable iff there
is & ground substitution over #{L) of the terms
such that the ground instances are both in the
same class of the finest T-congruence over 7{(I)
generated by E. This does not however mean that
if two terms are equal in another E-algebra model-
ling & then they are E-unifiable.

In thiz section we want to establish a rela-
tionship between falsity and failure of atoms. We
thus require in this section that an equality theory
dietates that equality holds only if E-unification is
possible. Formally, we say that an open equality
theory E is unification complete over #(E) if for
every equality formula e of the form

s = t),
where ¥ are the variables appearing in the terms s

and 1, either E = —e, or else there exists a non-
empty and possibly infinite set {#,} of E-unifiers of

s and t such that

Vy((s = t) — v{a}).
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Mote that the above expression means that in any
meodel for E, the following holds: If a valuation of
the variables in terms s amd t is such that s = t in
the model, then at least one of the E-unifiers I?i
(looked upon as a set of equations) is also true in
the model and valuation,

An eugmented definite clavse logic progrom
consists of a conjunction of predicate definitions,
exactly one for each predicate symbol in I1. These
definitions take one of two forms:

pfx) — Dy, (1}

or

"F'L{‘x} (2)

where the  are a list of n, distinet variables, the p,
are ne-ary predicate symbols, and the D, are the
definition bodies of p,. These bodies are each a
disjunction of formulas of the form

Fy(k = tAaB,ABA..AB,)

where the B, are atoms and ¥ are the variables dis-

finet from X appearing in the formula. Note that
these augmented programs are the same as the
complete programs of (Clark 1978) except that we
do not include his equality axioms. Finally we can
define our complete logic programs these are of
the form (P+, E#) where P+ is an augmented
definite clause program and E= o unification com-
plete equality theory,

It is well-known (see e.g. Clark 1978) how one
obtains from a definite clavse logic program a
corresponding angmented version, The converse is
also easy to define, that is to say, we can obtain
from a given P+ an unaugmented program P.
This is dome as follows: For each predicate
definition of type (2) in P+, obtain k definite
clauses where k is the number of disjunctions in
the definition, Then if

Ty(x =tAB, AByA..AB_) (3)

is one such disjumet, obiain the corresponding
definite clause

p{t) = By, .., B, ()

Note that we do not construct any definite clanses
from predicate definitions of type (2) in Ps.

For unification complete equality theories Es
however, we have the following as the un-complete
counterpart: E = {& e is a ground equation and
E# |= e}. In the other direction, one ecan deal
separately with each definite clause equality theory
E. For example, (Clark's 1978) sxioms form 2
unification complete extension of the trivial equal-
ity theory consisting only of the usual equality
axioms. In gemeral however, there is no unique E+
corresponding to an E. In what follows, we are
ouly concerned with the E corresponding to some
Esx.

Sinee E# is unification complete, we say that |
is an Es-interpretation to mean, as in zection 2,
that I has the domain given by {L)/E#, this being
the unique E-congruence over n(E) geperated by
E+. Thus I may be regarded as an interpretation
of arbitrary formulas in the obvious way, ie. 1
defines the domain and funetional sssignment by
virtue of it being an Es-interpretation, and I
defines truth velues via its elements. For brevity,
we now write, when convenient, T, SS and GF for
Tip, g S5(P, E) and GF(P, E) respectively, where
(P, E) is the corresponding logic program to the
complete logic program (Ps, E+) in question. We
write p(s) to denote some ground atom. The fol-
lowing lernma generalizes a result of {Apt and van
Emden 1082).

Lemima 6 I 1 is an BE-interpretation,
I is a fxpoint DIT[P B iff I is a model for [P+, E).

FProof. Let p be any non-logical n-ary predicate
symbol in P+ and recall that there is only one
definition of p there. If it is of the form (1), i.e.
ki

plx) +— A C, where each conjunction C,, 1 < i <
k, is of the form (3}, then this definition is satisfied
by 1 iff
for all d in ({Z)/E)",
pld) €1 « for some C, and ground substitution
0,d =[tf] and [Bf] €lforall1 < j < m.
Sinee for each C; there is a definite clause about p
in_P and vice versa, this is the same as
p(d} €1 +— p{d) € T(L) for all d.

Il however the definition of p is of the form
{2}, -p(x) is satisfied by [ iff p(d) & [ for 2ll d. By
the defipition of TIP, gy We have for each such p

that for all E-interpretations J and all d, p{d) ¢
T{J). Hence (P*, E) is satisfied by I iff T gll) =
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We are ready for two main theorems. The
first proves the soundness and completeness of sue-
cessful (P, E}-derivations for pesitive atoms valid
in (P, B+). We phrase our theorem thus:

Theorem 5. (P#, E+)|= p(s) iff p(s) € S8.

Froof. [—).

By the lemmas in section 2, if p(s] £ 55, then
p(s) ¢ 1 where I is the least E-model of P. Again
by these lemmas, I = Tfw is & fixpoint of T Since
I is also an E+interpretation, Typ g, = T, and
thus 1 is a fixpoint of Tip g By lermnma 6, [ is a
model for (P*, E+).

(=)

It suffices to show that Fs = P. This is easily
done along the following chain of reasoning: Any
definition of tne form p(k) «+— D in P# contaips
the subformula

pix) — D

where D is of the form C, v ... v G for some k >
0. This in turn is equivalent to the conjunction of

pli) — C,

for 1 < j < k. That is to say we have a conjune-
tion of formulas of the form

plx) — Fy(k =tAB A . AB_).
Each such formuls is equivalent to
plx) — [k =1t AB AL AB)

by a snitable manipulation of quantifiers, Finally,
this clearly implies the definite clause which
appears in P

p(t) = B, .. ,B.
Since every definite clause in P is implied by some
definition such as the p(x} +— D above, we are
done. N

We npow prove the soundness and com-
pleteness of generally failed (P, E)-derivations for
negative atoms valid in (P=, E#). Thus we justily
a form of the negation-as-failure rule (Clark 1978).
Cur theorem reads
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Theorem 6. (Ps, Da) k= —p(s) iff p(s) € GF.

Proaf. {+).

We prove that if for some model M of (P#,
E+), FfA A A A A A) is true, them the goal
Ay, Ay ooy A has an infinite (P, E)-derivation
sequence or & successful one. It suffices to show
that either A, ... , A_ is empty or we can have 2
derivation step starting from this goal and
obtaining a goal By, By, ... , B such that Jy(B, A
By A ... A B) is also true in M. Repeated applica-
tion of this construction proves the existemce of a
(P, E)-derivation sequence which is either infinite
or successful,

Suppose that for each 1 < i < n, A, is of the

form pi(..x0...) where ..XI)... stands for a list of
terms over 7 E U V) whose variables appear in the
list (. Consider the definition in P* of each of
these [not necessarily distinet) predicate symbols

pl:
P,y =D

where D is & disjunction of formulas of the form
T30 =0 AB AL ABI) (i)

Let V, denote a valuation of A, ..., A, ie an
assignment of an element in the domain of M to

each variable in % such that this comjunction is
true in M. Therefore, for each 1 < i < n,
pii_ %M.} is true in M under this valuation V.
Tt thus follows that one of the formulas #(i) is true

under this valuation. Hence the conjunction of
these o formulas

FL) A F#2) A A fEn)
is true in M under the valuation V. Thus so is
Fy. (A (50 = i) A Bl A LA BEL)
Hence the following is true in M:
Tyl ol :':. (0. =T ABJ A ... ABE).

where % is the list of variables in 1, ..., %) Our
proof is now complete by three observations: (a)
Since E+ is unification complete, there exists at
least one E-unifier # for the equations
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D IR
A L =tl)

such that # is true under any valuation for which
V), is a restriction. (b) Thus for each 1 < i < n,
(B A B & ... A BI)A is true in M for some valua-
tion of the variables therein. (c) There exists in P
definite clanses of the form

pﬂ]ﬁ,ﬁ]} o B{f}r Bﬁ’. . Bﬂu

for all 1 < i < n. Putting (a), (b) and (c)
together, we may conclude that from Ay ey A

and these definite clauses above, we can (P, E)-
derive

(B, .., B, ., B, ., B

(—).

Assuming that p(s) & GF, we now construct a
model for (Pe, E+) in which p(s) is true. We may
as well assume that p{s) ¢ 55. By the resuolts
above, p(s) is the first goal in an infinite derivation
sequence <G, C, §>,i=0, 1, ... Recall that
by cur variable renaming convention, there are no
common variables in C; and C; where i 3£ j. Let
E, denote a finite set of ground equations over a
larger alphabet T+ in that E. is obtained from g,
{looked upon as 2 set of equations) by replacing
each distinet occurrence of a variable X; with a dis-
tinet new constant symbol ¢;. In what follows we
make use of the fundamental property of the g

El=3x(0, Atyn..n6) (5)

for any fnite n.

We now complete the proof in two main
steps. Firstly, we show that Es+ = Ex U {E} is
consistent. Thus since E++ is open, we may have
{E*+}-interpretations 1. Secondly we build a
fixpoint 1 of Tep, Eed) Using lemma 7, we are
done,

To show that E++ is consistent, it suffices to
show, by the Compactness Theorem, that Ex+ =
Ex U {E,;, ..., E} is consistent for all finite n.

Let A be any closed formmia over #{Z). Consider
the following chain of reasoning:

E++ = A

implies
Etf=(E,n...AE)— A

by the fact that E, ... , E, have no varizbles and

the Deduction theorem. Since E+ contains only
symbols in ¥, by the Theorem on Constants, we
get

Exj=¥x({f, A...A0) — A).

Sinee E+ is an extension of E, from (5) we have
B = Fx(0, A Oy A .. A 0)

It easily follows that
Eej= A

Thus E+*+ is a conservative extension of E+ and
thus is consistent.

We can now complete the proof by construe-
ting a fixpoint of T:F, Bet ) Reeall that all goals in
the derivation sequence contain, if any, only sub-
seripted variables X;. Above we have defined, for
each such varisble %, & new constant e i.e. a con-

stant not in £. Now let [t] denote the congruence
class over 7E+)/(E++) containing the ground
term obtained from t by replacing each ocovrrence
of a subseripted variable X by the corresponding
constant ¢, The important point here is that for
any ground ferms s and t, [s] = [t] if E+4+ =5 =
t. Thus our notation [s] is consistent with our pre-
vious usage for the congruence class of s under
some equality theory, in this case Es+.

We can now define

Iy = {A: A € [G]] for some G, in the deriva-
tion sequence}

Next we show that I, C T{I). Any atom in [
must be in [G] for some i. Suppose G, is of the
form B;, By, .. , B, and the associated input
clauses bi are of the form



A~ DN, ..., D,}'-.”

A =DM, --- DI

Alm) Dllm]’ -, Dém}

Reeall that we rename variables so that they are
subseripted,  Sinee the derivation sequence is
infinite, G, exists and must be of the form

{D]F’Ju q00 :D:E.IL SER 'Dl{ml1 - rnéf}}ﬂi

where # is an E-unifier of G, and Al Alm),
Since [G,,,] C I, we have |A.“:'ﬂ.l, -y ﬂ[“lﬂl] C
T(Ty)-

It remains to prove that [ﬁmﬂi] = |'.B!] for all
1 < j < m. Suppose now that & is of the form

{x,/t, (), xp/t (%), .. X, /t, ()}

where ¥ iz the list of all subscripted wvariables
appesring bere. By construction, E; is of the form

e, =t,(e), .., o = t.(e)

where © iz the list of new constants corresponding
to the x. Since E+4 contains E,, it follows that for
alll <j<m,

EB]] = iB‘] I!jil

Since also 8, E-unifies AU and B;, we obtain (Al
= [B] forall1 < j < m, Thus B, .., B ] C
T(I,) and hence I, C© T(Iy).

Finally, we can use the Knaster-Tarski

theorem about fixpoints for monotonic funetions to
show that there exists an I which contains I such

that T(I) = 1. 1
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