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Abstract

Machanlams for the automation of uwncer-
fainty are required for expart systems.
Sometimes these mechanlsms need to obey
the properties of probabilistic reasoning. Wa
argue thal a pursly numeric mechanlam. Ilke
those proposed so far, could not do so. We
propose an alternative mechanism, Incidence
Caleulus, which Is based on a represantation
of uncertainly using sets of Inclidents, which
might reprasaent situations, models or possibie
worlds. Incldence Caloulus does obey the
proparties of probabliistic reasoning.

1 INTRODUCTION

Several mechanisms have been suggested
for the automation of reasoning with uncer—
tainty. ®.g. Fuzzy Logie. [(Zadeh B1).
Shater-Dempster theory. [Lowrance & Garvey
82]. and the mechanisms proposed In MYCIN.
[Shortliffe 76] and PROSPECTOR. [Duda et at
ial. Most of these mechanisms Involve as-
signing numbers to axloms {(e:g the facts and
relas of an expert system), and assigning
arithmatic functions to the logical connectives
and rufes of Inference. so that new numbars
can be calculated for the theorems that are
derivad from the axloms (e.g. the diagnoses
of an expert system), Wa will call such
mechanisms, purely numearic.

In some applications [t is Important to be
able to assign meaning to the numbers so
obtalned. rather than use them meraly to rank
order some options. For Instance, In medical
diagnosis a user sometimes needs to be able
to distinguish the situations where a diagnosis
s wery probably correct Irom  the situation
whera it Is just the best of an Improbable
batch. In the first case & surgeon might be
prepared to perform a dangerous oparation,
In the second s/he might want to call for
more tests and a re-diagnosis. In these
sltuations we would fike the numbers to
reprasent probabdlities.

Unfartunately, we will see that a purely
numeric mechanism cannof capture the

propertles of probablistic reasoning. Wea will
propose a mechanism, Incldence Caloufus,
based on assigning and manipulating sets,
which dees  caplure the  properties  of
probabllistic reasoning.

2 PROBABILISTIC REASONING

What properties must probabilistic reasoning
obay? These can be obtained from any
textbook on mathematical probability. e.g.
[Freund 72]. Adapting thaesa propertles to the
neads of a logical calculus glves the set of
gquations given below.

The probabiliity of some formula being true
is a real number, between O and 1. Wsa will
use uppear case lettars from the beginning of
the alphabet to denote formulae. e.g. A,
B. C. etc and write p(A) for the probabfilty
of A, etc. The probabllity of a true formula
is 1. and the probabillty of a false formuliae
is 0. That is.

piny = 1 £
and pif) = 0, Ll

where t represents the truth value. true. and
f represents the truth wvalue, falze. Values
intermediate between 0 and 1 correspond to
dagrees of probabllity belwaen these axtrames.

Tha following arithmetic formulae are then
assigned to the propositional connectives.

pl A = 1 - plA) Clily

plA & By = plA).p(B) {iv)
provided A and B are independent

plA v Bl = plA) + piBr - plA & B (L")

As we will sea, thea condition attachad to
equation {lv) Is very Iimportant. It means that
B is no maore or less likely given A than in
gaenaral. and vlce versa. It Is this condition
that  will pravant nAumerical mathods of
represanting probabilistic reasoning from suc—



caeding. because the indeapendence of Iwo
formulaa cannot be coded In thalr numerical
values,

3 THE LIMITATIONS OF A
PURELY NUMERIC MECHANISM

If wa Ignora the Independence condition on
equation (lv) then we get a confradictory cal-
c¢ulus. The contradiction can be daerlved by
applying the rules. unconditionally, o lwo de-
pandent formulae. for instance A and TA.
Suppose. for the sake of definiteness, that
piAy = .¥5, Using the aquations of tha last
spction we have the following derivation.

pl-A) = 1 = plA) = .25 (by (i)

plAa & “A) = p(A). p("AY = 1875 (by (v}
Similarly.
pla v "A)
= pi{A) + pl A} - piA & "A) (by (W)}
= .B125

Howevar, pl(A & "A) = pi(f) = 0 (by (i)
and plA v Ay = pity = T {by (1))

but .1875 # 0 and .B8125 # 1., Contradigtion!

The contradictlon cannot be avolded by
modifying the arithmetic functions assoclated
with the connectives. We would have o
maodify the equations (v) and (i) =o that
they gave value 0 when calculating the prob-
ability of a formula of tha form A & 7B,
where tha probabllity of both A and B Is .75.
But not all such formulas are false.

We need 1o deslgn a mechanlsm which
can take Into account the degree of depen—
dence of formulae when caleulating thalr
probabillties. in probability theaory  the
correfation, o{A, B}, belween two formulas. A
and B. Is used lo measure thelr degree of
dependence. It varies belween the values -1
w 1. clA.B)=0 means A and B8 are Inde-
pandant, clA. Al=] and gl(A, "Al==1, Tha
correlation is so defined that:

piA & B) = pl{A).p(B)
+ elA, B), {plAl . p{TA). p(Bl.pl"B) (vl

Tnis formula provides an unconditional alter-
native to formula (). I.e. one without tho
condition that the oonjuencts e Independeant,
Howewvar, It doe&s assume knowladge of both
the probabllities and the correlations of the
conjuncts. This assumptlon would not be
unreasonable i we had a correislion cafculus
which provided formufae. for calculating the
correlations of complex formulas from their
subformulae, . e. It wae had formulae which

147

enabled the caleulation of c{A&B.C}.
clAvB, C), e(A,C) and olA-*B.C) purely
from plA), p(B). piCy. el(A.BY, ol(A. C)
and ci(B.C).

We will see in section 6 that It is not
possible to provide such & ecaleulus, So in
order to use formula (vi) It |5 necessary o
ba provided with the correlations of all the
infinitely many. possible palrs of formulas.
Thls means that using corraelations I8 not a
faasible solution to the problems of depen-
dency In probability theory.

4 A SET THEORETIC MECHANISM

Te design a mechanism which can deal
with this problem wé nesd 10 go back to the
sat~theoratic roots of probability theory, The
probabliity of a formula is based on & disjoint
sat of siwatlons. Tarskian Interpretations or
possible worlds. [Freund 721, which wa will
call Tncidents, w will rapresent the set of all
Incidgnts In which the formulas of the theory
are to be evaluated.

Mon-trivial theories often have an Infinlte
number of peossible Interpretations. For com-
putationa! reasons we will vsuvally require w to
bo finite. Thus sach Incident must somelimes
stand for an infinite set of Interpretations by
glngling out some distinct properties of this
set.®* Let I(AY be the subset of w. contalin-
Ing alt those incidents In which formula A Is
true, We will call I(A). the I[ncidence** of
A. The dependence or Indopendence of two
formulae s coded In the amount of Inter-
section batween their Incidenceas. The
amount of Intersection of two Independent for-
mulaa i& no more or 833 than you would
oxpect from a random assignment of the ale-
mants of thalr incldances.

Incidence Calculus can be added 1o an
axlsting fogle, e.g. Propositional or Fredi-
cate Logic, as Mte semantle interpretation,
For instance. it provides an alternativea to the
truth tables of Propositional Logic, whare i{A)
is the aiternative to the ftruth wvalue of the
formula A, The normal, Tarskian semantica
may stll be wseful to settle the meaning of a
tormula within an ingident. e.g. it that
ingldent 18 a Tarskian intorpretation.

For the rest of this paper we will assumeo
the underiying logic to be Pradicate Logic with
formulas In fully-Skolomized form. Tha fal-

*incidenl: a distinet or definitn ococwmence: event.
= Collins English Dictionary. ’

**incidence: degres, extent or frequency of SCCUITEnco;
amount. ~ Colins Engiish ictionary. -
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lowing eguations give a semantlcs to the truth
fenctional connectives. constants  and  free
variables of Predicate (and Propositional)
Logle to glve Pradicate (Propositionall In—
cidance Logfc.

i) = w Cwild
i = g Cvhiid
i°AY = w A\ I(A) ]
ith & Bl = I(ay 1 KBy (%)
fta v By = (A U (B} (=i}
HACKYY S AT Cxiiy

whaere A(T) Is the formula
formed by substituting term T
for avery occurrence of X In ACX).

Note that there Is no indepsndence conditfon
on  equation  (x), Mote also that since the
formula are In Skolem normal form, It I8 not
necessary W glve eguations for the guan-
tiftars.

IF 1 is an incident. let p(l} be the prob-
ability of | occurring. I 5 s & set of
fncidents. lat wp{S) be the sum of ths
probabilities of the incidents in 5. | e.

wpis: = E“_S plid

wp(3) Is called the weighted probability of
8. For computalional reasons we will usualiy
use finite 5. but the theory doas not reguirs
S to ba finlte or even discrate.

Since the Incldents of w are disfoint.
wpiw) = 1

It A is a formula, et plA) be thse probability
of A occurring. We define

PIAY = wplitA))

From these delinitions it is sasy to derlve
the probability equations of section 2.

pitr = wplifth} = wplw) = 1
plfy = wpll(f)) = wpi{{l) = O

plA) = wpl{TA)) = wplw \ I(A))
= [wpiwl = wpil{Aad)]
= 1 - wplitAY) = 1 = ptA)

it A and B are Independent them B is true
just as frequently if A is true as it Is In
general. This can ba expressed mathamatically

a5

wplICAZB) Y fwpll{A)) = wpll{B1)

hence. plA & B) = wpli(A&B))
= [wpli{A}). wplitB1)]
= plA).p{B}

it the weaighted probability of incidents in
which A is true Is added to the welghted
probablliity of incidents In which B is true then
the weighted probabliity of incidents fn which
both are true ars counted twice. This can
be expressed mathematically as:

wpolitAld + wplilBl) =
wpil{a v B} + wplilA & B))

hanca.

plA v B

wplitA v Bi)

fwpCliar) + wpll(B)) - wpl(i{A & B1)]
plAY + piBY - plA & By

H oW

It follows that we can represent the prob-
abillty of a formula. A, implicitly. by as-
sociating its incidence. [(A). with it. if we
naad o know the probability we can calculate
wplitad}),

5 SOME [IMPLEMENTATION SUGGESTIONS

One of the advantages of a purely numeric
mechanism for uncertainty 1s that computers
are particularly efficlent at representing and
manipulating numbers. They are not so af-
ficient at representing and manipulating seis,

However., Incidence Calculus scanm be imple-
mented reasonably efficiently by representing
the incidances of formulas as bit sirings and
manlpufating them with logical operations.
Each incidence can be represented by a bit
string of a fixed langth., say 100 bits, each
bit corresponding to an eloement of w. The
lengar the string. the greater the accuracy.
but the greater the cost In terms of space
and tima. Each bit in a siring Is 1 or 0O
according to whether the slement It cor-
responds to I8 or is not in the [ncldence
being represented.

The ircidence of A & B can then be
calcwated by taking the logical and of the
incldences of A and B; the Incldence of A v
B can be caleulated by taking the logleal or
of the incidences of A and B: and the in-
cidence of “A can be calculated by taking the
logleal not of the Incldence af A,

Ta simplify the calculation of probabllities.
the incidents of w can be taken as squi-
probahble, then:



st n(S) ba the number of aloments In st S

gince the Incidents are eaqul-probabio.
for each Incident . p(i} = 1/nlw),

hance,. for each subset. 3. of w.
wpl8) = niB)/nlw)

so. for sach formula. A.
piAY = nl{l{A) ) /niw) Cxliid

We can now redo the calculations of sec-
tlom 3. but wusing Incidences rather than
probabilities. let w = {0.1.....99). which
might be Internally represented by a bit
string. as - describad above. Using a w of
slze 100 will enable us to calculats
probabilites to 2 declmal places.

Suppose A Is a formula with probabililty
.75, We wifl assign to A the Incidence
0m.17..... T4). Now using the Incldence
equations of section 4:

(A = (75,76....99) (by (i)}
A & “A) = () (by (x))

A v “A)
= 0.1..... 74.75..... 89} (by (xi)

hance. p(A & "A) = 0 (by (xliid}
and p{A v A) = 1 (by (xii))

which is as desired.

However, i B I8 a formula, independent
of A, with probabllity .25, p{A & B) i3
different from p(A & "A). Suppose we as-
slgn to B the incidence {0.4.8.....96). then:

A & B) = [(0.4.8..... T2} (by )
hence, p(A & B) = .19 (by (xiii})

KA v Bl
= {0, 7.2,....74.76,...968) (by (x})}
hence. plA v BY = .B1 (by (xiii))

which [s ecorrect to 2 decimal places as
desired.

It is interesting to compare the Impleman-
tallon suggestion above wilh the Probablfistie
Logig of Nilsson, [Nlisson 841, in Probabiiis—
tle Logle Incidents are  partially=specified
Harbrand Models. |.e. they are vectors of
truth assignments 1o a finitée sequenca of for-
mulas., Thus the Incidence of each formula
congists ol those Incidents with the value
‘tfrue” In the vector slot corresponding to that
farmuia. The following calculation Is used 1o
find the probabliity of a new formula. given
the probabllities of some old formulae.
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{a) Construct all the incidents for the
gat of oid and new formulaa.

(b} Make an assignment of
probabllities to  sach  incident
which will ylald the given
probabllities of the old formulas.

f{g) Use this assignment to calculate
the probabillty of the new lor=
mulae.

Step (b} above Is computational Impractical in
general. Milsson suggests various ways fo
clreumvent It in . spacial cases. Our Im-
plemeantation suggestion avolds the problem
because our incidents are ossontially meaning-
less. rather than belng Herbrand Modals, as
Nilsson’s are. The probability of sach of our
incldants is set to 1/niw). and hence an
impractical calculation is avolded. Instead of
lixing the probabilities of the formulae by ad-
justing the probabliity of the Incidents, it fs
done by adjusting slze of their incidences,
and this Is a much less expensive calculation.

It the domain supports a more meaningful
representation of Incldences. then these can
be used instead of bit strings. For instance.
in a domain invalving time. It might be pos-
sible o specify a numbsr of hypothetical fu-
tures. o.g. it ralns, [t snows. there is
sunshine., alc. It may then be possible to
assign incldences to axioms In a principied
manner. It these hypothetical futures are not
equi-probable, then we must assign a prob-
abllity to sach of them to enablie wpi(ll to be
calculated for each incidence. When the in—
cldences are meaningful to the user we might
expect himfher to Input them direct, rather
than use probabilities. In thisa case we may
not be Interested in calculating probabilities at
all.

I have not Implementéd any of thase
machanisms.

6 THE MPOSSIBILITY OF A
CORRELATION CALCULUS

We are now In a position te redeem the
promise of section 3 to show that a correia-
tlon calculus is impossible. In particular. we
will show that it is not possible to give a
formulae  which  enabled calculatation of
c(A&B.C) puraly from p(A), Pp(B)., pl(C).
elA.B), elA,C) and of(B,.C).

To do this wa need only exhibit two situa-
tlons in each of which the wvalues of p(A).
p(Br. p(C), ofA,B). c(A.C) and e(B.C)
are identical. but where c(A&B,C) has dif-
farant values. Such a pair of situations is
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Situation 1

A B

A

Sikuation Z
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Figura 1: The Impossibility of a

Correlation Calculus

axhibited In the Venn diagrams of figure 1.
In these situations w=(0,1,2.3.4.5.6,7.8.9)
and each of these incidents iz equi—probable.
The incidences of A, B, C. A&B, etc are
assigned as in the diagram. e.g.
HAY={0.3.4) and (ARB)=(3) in siuation 1.
From these assignments we can use formulze
(xlliy and (v} tw calculate that:

plA) = piB) = piC) = 0.3
in both situations and that

plARE) = plB4C) = plA&C) = 0.1
in both sltuations.

Hence, ol(A.B) = o(B.C) = e(A,C)
= (0.1 = 0.3x0.3) /740, 23x0. 7x0. 3x0. 7
= D.0476819 in both situations.

But in sitluation 1 p(A&B&C) = 0, so
clARB,C) = (0 - 0.7x0.3) /40, 1x0. 9x0, 3x0. ¥
= =0, 21822

and In sltuation 2 p{ASBAC) = 0.1, so
clALE. C)
= (0.1 = 0.1x0.3) /7 ]0. 1x0. 9x0. 3x0_7
= =0, 509718

Considerad study of this example should
convince you that having different valuas of
clARB.C) for the same values of plAd,
plBy, piC), c(A,B). clA,C) and c(B.C) Is
not an exceptional siwation. but rather the
norm. So we cannot hope for a rough cor-
ralatien  oalculus  whizch  would mersly work
most of the time.

Malther can we hope fer a calculus based
on a modilied form of corraiation. To be
usaful any such function. d(X.Y), would have
to enable p{X&Y) to be calculated purely from
jtsgll and plX) and p(Y). as in formula (vi.
Thus d(X,Y) would be expressible purely in
tarms of p{X), p(¥Y) and piX&Y), Henca.
d{X&Y.Z) would be exprassible purely in terms
of pixX&Y)., pl2) and plXAYEZ). The
counter—exampie given in figure 1 makes the
values of plA}, piB), piC), plABB),
pl(B&CY and p(A&C) identical In the two
situations, but makes the valuss of p{ALBAC)
differant. Thus o(A.B), d(B.C) and dl(A,G)
would be the same and d{A&B,C! would be
differant. howevar di{X.¥) was deflned.

7 RULES OF INFERENGE

The equations of Incidence Calculus as-
sociate sel theorstic algorithms with each
loglecat connective, as an alternative 1o the
truth tables. But. If Incidence Calculus I8 1o
be used In automatic Inference. it. s also
necessary ¢ associate algorithms with the
rules of Inference, a.g. If modus ponens Is
used It will be necessary to caloulate (B}
from I(AY and i{A=-2B)}.

Unfortunataly, there is a difficuity. in
genaral. It H - C Is a rule of inference of a
logical system then ail we can infer is that
itHY & 14g): it H Is true In some Incldent
then ©C will ba true In that incident.
However, © may also be true in Incidents in
which H Is false. and so we canno! conclude
that i(H) = 1(G). Thus, given the incldence
of the axioms of a theory, we can oniy
caleulate a lowar bound on the Incidents of
the theorems.

Each derivation of a theorem will give a
lower bound on I8 incidence. If several dif-
terent derivations glve several different lower
bounds then we can caloulate a new lower
bound by taking the union of the derived
ones. This is lagltimised by the 2el theoretlic
theoram,

LEIaLel 2L ULE

whare | |s the iIncldence and L1 and |1 two
lower bounds.

The malntenance of a lower bound of the
trué incidence I3 In the same spirit that
MYCIN amalgamates the certainty factors cal-
culated from different derivations of the same
concluslon, except that the MYCIN amalgama-
tion aigorithm is ad-hoc whereas ours is jus-—
tifled by se! theory.

in Shaler-Dempster theory both a lower
and an upper bound are maintalned.



{Lowrance & Garvey B821. The Ilower bound.
Spt{A). represents the degree to which the
evidence -supports Al the upper bound.
Pis{A). represents the degree to which the
evidence falls to refute A. An upper bound
could be provided In Incidence GCalculus by
calculating the complament In w of the lowar
bound of the negation.

# MAINTAINING CONSISTENCY

I the wuser of an experl sysiem based on
Incidence Calculus s able to assign in-
cldences In an uncontroiled manner, then it
Is possible to make an Inconsistent assign-
ment. For instance. It follows from the egua-
tions of Incidence Calculus that:

w oy IAY £ (a-2B)

80 A-»B cannot be assigned an Incidence
indepandantly of A. Suppose that w = (a.b.c)
and the wuser asaigns (A) = (a] and
itA=B) = {a.bl. then:

(al = (A = A A I("B)
(A& B)

10" (A=2B))

v oilA—->B)

b.c) \ {a.bl

W
{a.
{z)

moimom

2 {e). which Is a contradiction.

)

80.

This possibllity of bullding an inconsistant
theory is true of any theory. Bbut Is par-
ticularly @asy to do unlntentlonally In Incidence
Calculus.

in Propositional Incldence Calculus, If w Is
finite. some of these Inconsistencies can bo
detected by a terminating algorithm. namely:

Dafinition 1: Inconsialancy Datec-
than  Algorithm:

Set uvp a directed graph. called
the depondency graph. In  which
nodea ara labelied by propositional
formulae and each formula Is con-
naected by arcs to Hs Immediate sub-
formulasa. Associate with esach node
the  wvalues of suplA) and Inf{A),
whaera A s the formula labelling the
nodea. Initialize these wvalues as fol-
lows:
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For each axiom, A:
Let gup(fA) = ifA)
Lot inf(A) = i{A)
For each proper subformula,
B, of A for vhich sup{B)
and inf{B) have not already
been assigned:
Lot sup{B) = w
Let inf(B) := {}

Propagate the sup and Inf values
around the dependency graph. ac-
cording to the followlng rulas., until
no further changes can bo made.

For each subgraph connecting A and “h:
Lat sup(A) 1= {w \ inf{"A})} N sup{a)
Let inf{A) = (W \ Sup{™a)) U inf{A)
Let sup(“A) = {w \ inf(A}) N sup(~a)
Lat inf{"A) = (w % sup{A)) U inf{~A})

For each subgraph connecting A, B and A&B:
Lat sup{A) := [Sup(A&B) U w\inf(B)] A sup{a)
Lat inf{A) = inf(A & B} U inf(A)

Lot sup(B) = [up{AEB) O w\infi(A)] A aup(B)
Lot inf(B) = inf(A & B) U inf(B)

Lat sup{AEB) := sup({A) A sup{B) /A sup{A&B)
Lot inf(REB) r= [inf(A) n inf(B)] U inf{ASE)

For each subgraph connecting A, B and A v B:
Let sup(A) 1= sup{A v B) N sup(A)
Let inf{A) i= [inf{A v B) N wisup{B)]
U inf(a)

Lot sup(B) 1= sup(h v B} N aup(B)
Let inf(B) = [inf{A v BY N wisup(a)}]
o inf(B)

Lat sup{A v B) := [sup(A) U sup(B}]
N suplA v B)

Lot inf{a v B) := inf(A) U inf(B)
0 inf(A v B)

For each subgraph connecting A, B and A -3 B:
Lat sup(A) = [w % {inf(A~:BY A whiaup(B))]
N sup(d)
Lot inf(A) = (w \ sup{A->B)) U inf(A)
Lot sup{B) = sup{A=3B) N sup{B)
Lat inf(B) t= [inf(A~:B) N inf(A)] U dnf(B)
Let sup{A-3B) := [whinf{hA) U sup{®}]
7l sup(A—>B)
Lot inf(A=-B) := whsup{A)} U inf(E)
U inf{A—>B)

If for any formula, A, inf(A) ¢ sup(A) then
exit with INCONSISTENCY FOUND

Since w s finite and thers are only
a finlte numbar of formulas to be
considered and the sup and Inf
values change monotonically. then the
atgorithm will eventually terminate.

On the problem above the algorithm makes
the following calculations:

sup(A) = (a)



172

inflA) = (a}

suplA—B) = [a.b)
inf{A->8) = {a, b

sup(B) = w
inf(B) = 0

suplAy = [w %\ ((a.bl & wwd] n (a) = (a)
inftAY = (w \ fa.b)} U (a) = (c.a)

InftA) & suplA)
Thorefora. exit with INGONSISTENCY FOUND

It the Incidences of the axfoms are
rasiricted to be w or [ then the Inconsisteéncy
detection algorithm degeneraies Inlo an In-
complete algorithm for delecting contradictions
in standard Fropositional Logic and. hence,
degenerales into an Incomplele taulclogy
chacker. For Instance. It will find an Incon=
sistency H 1(A&™A) s assigned w. but it wili
tall to detect the Inconsistency If i(A=B).
i(B-*A), A v B) and ("(A&BIY are all
asslgned w. Therefore. the algorithm is also
incompleta for Propositional Incidence Logic.

A complets inconsistency detection algo—
rlthm |5 possibla, but prohibitively expensive in
this appllcation. it would have 1o degenerale
inte a complate tautology checker. MNote that
tautclogy checkers for siandard Propositional
Logic are NP complete because they must
consider aevery assignment of the two truth
values o each propositton. A complete incon-
slstency detector for Propositional Incidence
Logic wnulg“nava to conslder every assignment
of the 2 possibie Incldences 1t each
proposition.

In Predicate Incldence Caleulus no com-—
plata tarminating algorithm exists. Such an
algorithm wouid have to degenerale Into a
complete terminating algorithm for detecting
gontradictions in standard Predicale Cailculus.
and this task s known to be semi-decidable.
However, we can extend the I[ncomplete In—
consistency detectlon algorithm with the follow-
Ing steps.

Dofinition 2: Extenslons 1o the In-
consistancy Detection Algorithm:

Add ares. to the dependoency
graph, connecting each formula. A
o gach of s Instances. A

Add tha canstraint

propagation rules:

following

Lot sup{A) = sup(A') " sup(A}
Let inf(A')} = inf(A} U inf(A’')

The storage of sup(A) and Inl(A) rather

than {(A) Is wvery similar to the siorage of the
intarval [Spi{A).Pis{A)] in Shaler-Dempster
theory rather than the probability, plA). in
fact.

SptcA) = nlinflA)) /niw) and

Bis{A) = nisuplA))/niw)

So Incldence Caloulus can sasily be adapted
to provide a mechanism for deallng with the
problem of dependent formulae In Shafer-
Dempster theory, Instead of In  probabillty
theory.

9 SOME MORE
IMPLEMENTATION SUGGESTIONS

To initialize an Incidence basad systam.
axioms mus! be given and Incidences must be
asslgned to them, in  expert systems ke
MYCIN the Initlal assignment of numerical
‘uncertainty factors’ is made by the user.
Wa will assume that users are prepared
assign probabilities (numbers) to axioms, but
not [ncidances (sals). In  this case, our
task Is to convert probabilities inlo incidences.
Since incldences [ncorporate moré Information
about the Ilormufae than probabillties, namaly
the degree of independence of the farmulae.
we must aither make assumptions about this
extra Informaticn or provide a mechanism for
thia user to Input It Wa wlll take the former
course. and assume that each axlom is as
independent of the others as Is allowed by
tha equations of incldence Calculus. Howaver.
the mechanlsms could be easily adapted to
take into account user-supplied. correlation
infermation.

In the case of Propositional Ingldence Cal-
culus the inconsistency detection algorithm can
be re-activated on each Incomlng axiom to
maintain dynamic lowear and upper bounds for
the assignment of Incldences to axloms. [.&.

infla) = HA) = supl(A)

Thus the assignmaent mechanism glven baelow
can be used,

Definition 3: Incidence Assignment
Mechanlam:

ta) ¥ necessary. add A to the
dependency graph and run the In-
consistency detectlon algorithm o
termination.

(b} Assign all eleaments in Inf(A) 10



iCA),

(e} Assign elemonts randomly to (A)
from sup(A) A\ Int{A} to bring
ICAY to & size such that
plAYsaliCAY ) /nlws, *

{d) K step (cd was possible then re-
activate the Inconsistency detection
algorithm. Fail # It finds an
inconslstency.

{a) If the steps (e} or (d) cannot be
executad then. if possible. back-
up and roassign elements to pre-
vious Incidences to correct the
situation.,

() H step (@) Is not possible then
complain to the use that his/her
assignment of probabllities I1s In-
congistent and request a reassign-
meant,

For Instance., suppose A Is assigned the
probability .75. B the probability .25. and
A v B the probabllity 1. in that order. We
will et w = {0,1,...,98). The Incidence as-
slgnment mechanism will start by bullding a
dependency graph consisting only of A. with
Inf(AY={}] and sup(Almw. Step (b} Is a non-

op. Suppose step (c) assigns {(0.1,.... 74l
o i{A. Step (d) will then  assign
0.1,...74) to sup(A) and InflAd. Since

steps (c) and (d) were successful then the
ramalning sleps are not run.

Suppose that the mechanism  assigns
0.4.8..... 86} to IB). In a similar way.
The trouble comes when [t makes an assign-
mant 1w (A v B, Step (a) adds the HNrst
args to the dependency graph. and causes
the first., non-trivial constralnt  propagation.
suplA v B) and InftA v B} both get the
value (0.1,2....74.76,....96). The altempl.
al step {(c). to aassign w to {A) then falis.
Step (e) forces reconsideration of the random
assignment of (0.4.8....96) to B, The
only assignment that will work at this stage is
(76.76,....09}).

Note that the problem only arises If the
assignment to (A v B) Is done last. If.it is
done before the assignment to (A or (B
then the Inconsistancy detectlan algorithm  will

"Tha ascuracy of this random assignmant technigue can be
improved by increasing the size of w.
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propagate constraints on these assignments
which will force step (e) to assign  un-
problematic wvaluas to them. For Instance.
suppose I{A) is assigned a wvalue as above
and then [(A v Bl Is dealt with. Step (&) will
assign w 1o both sup(A v B)Y and inf(A v B).
Step (d) will assign {75.76,....93 to Inf(B).
Whan step (b) works on B. It will assign all
ol [F5.78..... 99} to I{B) and step (e} will
find no further assignment I8 necessary to
bring i(B) fo the required slze. This assign-
mant will pass all remaining tasts.

The perfection of the iIncidence assignment
mechanism Is ona of the main outstanding
problems for Incidence Calculus. In par—
ticular. step (o) above Is only crudely
specified. and it Is not known whether the
Incompleteness of the inconsistency detection
algorithm will cause problems In practice.

Back-up might be avoided in most cases
by requesting from the user. not  just
probabiflities for the formulas, but correlations
botween them. This |nformation could then be
used in step (o) to improve the random
assignment of incidents to formulas. For
instance. If the wusar had specified a correla-
tion of -1 betwesn A and B In the example
above then they would have been assigned
disjoint incidences In the first placa.

Mote that, In existing expert systems. the
uncartainty values attached to all but some
ground. propositional axioms (l.a. s0MmMe
‘lacts’} are set by the knowledge engineer.
A gimllar assumplion about Incidenceo Caleulus
based systems may enable them fto guarantes
congistency and avold the neead to romake tha
random asslgnment of incidents. Suppose we
assume thal the consistent Incldences are as-
signed by the knowledge englneer belore the
system Is run. This enables ws to set up
the dependency graph in advance with consis-
tent assignments to sup and Inf for all for-
mulae in the non-propositional or non-ground
axloms, l.e, to all formulae in the ‘rules’.
The user noed only assign probabflities to the
“facts’. The Inconsistency daetection algorithm
will only be rum to propagate the incidencies
ol these ‘lacts” to the other axioms. I
conjectura that thls use of the algorithm Is
complete  for Propositional Incidence Logle.
The assignment of Incidences to the ‘rules’
will force correlations on the ‘facts” and limit
the range of Incidents that can be randemly
asslgned to  tham. | eonjecture that any
Inconsistency that arlses cannot be due 1o
any faulty. random assignment in step (c) of
the incidence assignment mechanism. bul
must be due to the Ingonsistent assignment of
probabliities by the user. Thus the raassign-
ment of incidents ( step (@)) will not be
raquirad.

The Incidence Assignment Mechanism ecould
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be easily adapted to Shaler-Dempster theory
by modilylng steps (b) and (¢} so that thay
changed fthe size of Inf(A) and sup(A) s0
that they gave correct values for SptlA) and
PistA) . rather than plA).

10 CONCLUSION

In this note we have described a
mechanism. Incidence Caloculus, for Incor-
poraling probabillstle reasoning in an inference
systeam. This mechanism s based on the
assignment of sets to formulae. rather than
the normal technigue of assigning numbers o
formulasa. Qur mechanism captures the
propertles of probabilistic reasoning (sectlion
2). which a puraely numeric mechanism could
nat do. It can be reasonably afflclently im-
plementad using bit strings.

We Intend 1o Implament the mechanlsms
daescribed In this papar and test them out In
practice. Problams may arlse beacause:

= the random assignmeant of incldents
in stap (¢} of the Iincidence as-
signment mechanism may nead to
be remadsa:

= tha Incomplate [nconsistency detec=
tian algorithm may fall to detect
inconsistencias: and

= the provislon, by the Infarance
machanlsm. of only & lower bound
on the probabilities of formulas,
may not prove strond enough In
practice.

Of course, the last two problems are also
prosent In current expert systems, and thase
systerns do not have the benefit of assigning
genuing probabilities to formulag. The first two
problams may be avoldable by assuming that
the Incidences of all but ground propositions
are sat, correctly, by the knowledge en—
ginaar, The provision ol only lowsr and
uppar bounds on the probabilites of formulae
is made a virtue In Shater-Dempster theory.
Incldence Calcuius can be readily adapted 1o
this theory.
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