PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1984,
edited by ICOT. © ICOT, 1984

157

QUTE: A FUNCTIONAL LANGUAGE BASED ON UNIFICATION

Masahike Salo

Takafurd Sakural

Department of Informalion Science, Faculty of Selence
Universily of Tokyo
T-3-1 Hongo, Bunkyo-ku, Tokye 113, JAPAN

ABSTRACT

A new programming language called Qute is
inlroduced. Qute i a funclienal programming
language which permils parallel evelualion,

While most [unctional Programming
languages use pallern malching as basle variable-
volue binding mechanism, Qute uses unificalion
as ils binding mechanism. Sinee unifiealion is
bidirectional, as opposed to pallern malch which
is unidireclional, Qule becomes a more powerful
functionpal programming langusge than most of
exisling funclional lenguages.

This approach enables the nalural umificafion
of legic pregramming language and funcitional
programming language. In Qule il is possible lo
wrile a program which iz very much like one writ-
Len in conventional logic programming language,
say, Prolog. AL the same lime, it is peossible to
write & Qule program which looks like an ML
{which is a lunclional language} program.

A Qule program can be evaluated in parailel
(and-parallelism) and Lhe same resull is oblained
irrespective of the parlicular order of evaluation.
This iz guaranteed by the Church-Rosser praoperly
enjoyed by Lhe evalualion algorilhm.

A complelely [ormal semanlics of Qule s
given in Lhis paper.

1 INTRODUCTION

In this paper. we will inlreduce a new pro-
gramming language called Qule, and will define ils
semantics formally. The name Qule may be
confusing Lo some readers, since we have already
reported aboul previous versions of Qule in [7],
[8]. The new Qule, which we will deseribe in this
paper is rather differenl from Lhe previous ones
although iU inherits many things froem Lthem. In
apile of Lhis, we have decided Lo call Lhe new
Thiz paper is based on Lhe resull of aclivilies
aof working groups for the Fifth Generslion
Compuler Syslems Projecls.

language also Qute.

Quie is a funclional programming language
which permils parallel evalualion. While mestl
functional languages wuses patlern malching as
basic wvarisble-value binding mechanism, Qule
uses unificalien as ils binding mechanism. Since
unification is bidireclional, as oppeosed toe pallern
malch which (s unidireclienal, Qute becomes a
more poweérfu! funclional language then most of
exisling [unclional languages.

This approach enables the natural wrdfication
of logic programming langusge and lunclional
language. In Qute it is possible to wrile a pro-
gram which is very much like one wrillen in con-
venlional logic programming language, say, Pro-
log. At the same Lime, it iz possible lo wrile a
Qule program which looks like an ML (which iz a
funeclional tanguage',l program.

In the design ol Qule we Lried Lo minimize
the number of basic concepls. so Lhal the
language becomes easy o learn and specify.
These concepls were selected frem logical con-
siderations, and a3 8 resull seme of them were
inherited from Concurrenl Prolog ({98], [10]} and
ML ([2]}. In perticular, we imported Lhe con-
cepls of ‘parallel and’ and 'sequential and’ from
Concurrenl Proleg. Furthermore, Qule has
‘negaticn’ and ‘if then else” as Lwe of the basie
programming construcls. Though they also are
selected from the logical consideration, Lhey act as
synchronization mechanism in “parallel and'.

A Qule program can be evaluated in parallel
(and-perzllelism only) and the same result is
oblained lrrespeclive of the particular order of
evaluakion., This is guaranteed by the Church-
Rosser properly enjoyed by Lhe evalualion alge-
rithm. Although it is pessible Lo add a nondeter-
ministic [ealure to Qule orthogonally. this point is
nol discussed in Lhis paper.

Quite is a programming langueage thal evalu-
ales an expression under a cerlain environment.
The evalualion process ecan be considered as a
reduclion process of Lhe given expression, and the

158

evalualion stops when Lhe expression has been
reduced Lo a normal erpression for which no more
reduction is possible. Through the process of
evaluation the given environment is also changed
Lo anolher environment by unification. Therefore
Lhe result of an evalvation can be conszidered as a
pair of mormal expression and an envirenment.
We explain Lhese points in the lellowing order.
In 2 we define the syntax of Qute, and in 3 we
define the fundamenial concepls of unificalion
and environment. In 4 we explain lhe semantics
of Qute infermally and give some examples, and
in & we give a complelely formal semanlics of
Qute,

2 SYNTAX OF QUTE

2.1 symbolic expressions

We define lhe domain of symbolic expres-
sions (sezps for shorl), which is used Lo define
the semanlics of Qute. MNamely, later in this
paper we give the formal semanlics of Qule by
interpreting Lhe Qule programs in Lthe domain of
sexps. Symbolic expressions are constructed by
the following clauses:

1.+ (nil) is 2 sexp.
2. I sand { are sexps then [s . {] is a sexp.
3. If sand £ are sexps then (s . t) is a sexp.

Ali Lhe sexps are econstructed only by means of
the iteraled applications of Lhe above three
clavses. and sexps construcled differently are dis-
linct. A sexp can be considered as a binary tree
whose leal is » and whose node contains a cne bit
infermation.

We introduce dobt nolalion and list notation

as nolations for sexps. {We will use lhe symbeol
et oas infermal equality symbel, and will reserve

the symbeol '=" as lormal eguality sign used in
the programming language Qule.)

[.z]=2z

(= e Y

=l [z . 5. 5] (nzl)

[z, - . x)l=[z. .=z . (nx0)

2.2 symbol and variable

Although il is possible to define the concept
of an expression as a string of characters defined
by a cerlain sel of grammeatical rules, we will
define the concept of an expression as a cerlain
sexp. We lake this approach only because the
semantics of Qule can be conveniently given lor
an expression represented as & sexp. We first
define Lwo auxiliary concepts of a symbol and a
varjable.

A sexp of the form (+ . 1) is called a symbol
Symbols are used to represent basic dala objects,
and for this paper, we assume thal lhe domain of
integers and the demain of strings of ASCII char-
aclers sre represenled by lwo digjeinl sels of sym-
bols. (How they are actually represented is nol
important.} We use usual decimal nolalion [or
integers, and a string of characters will be
represented by enclosing it between a pair of '™
signs. Thus, e.g.,

"apple”

is a symbol which represents a word of length 5.
We also choose a cerlain symbol {which is neither
an integer nor a string) and ecall i wml We use
the nolation ‘()" to denole Lhe unil. From now
on we will consider only Lhose symbels which are
either a unit, an inleger or a string.

& sexp of the form {"var" . s} where g is a
string, is called a pure varieble We define a vori-
able by the follewing inductive clauses.

(i} A pure varlable is a variable.
(it) If = iz a variable then (“free” . z) is a wvari-

able.
Fer a string " - -+ " we use - - lo denole Lhe
Ppure variable ("var" . * - --"}, Thus, ag.,
X

denoles Lhe variable {"var® . "3").

A sexp of Lhe lerm ("gvar” . 5) where s is a
string, is celled a global variable We use a similar
convention to denole global variable. In order lo
avoid notational ambiguity, we reserve Lhe sirings
wihose length i3 al leasl 2 and which begins with a
lower case character for glebal variables. Thus
‘foo’' becomes a global variable, while ‘x' is a
variable.

In Lhe fellowing, we will call both variables
and global variables simply variables and we will
use x, y. z etc. to denole variables.

2.3 expression

We define an ezpression by the following
induclive delinition,

(E1) A variable is an expression.

{E2} A symbol is an expression.

{E3) = is an expression.

(E4) If @, b are expressions then [e . b] is an
exXpression.

(E5) It a. b are expressions then
("and" . (@ . &)) iz an expression.

(E6) If a, b are expressions then
("lambda" . (@ . b)) iz an expression.

(ET) If i, b are axpressions then
{"seqand” . {a . b)) is an expression.

(EB) If @ b, ¢ are expressions then
(*if* . {a . {6 . €})) is an expression.

(E9) I o iz an expression then ("not” . a) iz an
expression.

(E10)If @, b are expressions then
{"apply” . {a . b)) is an expression,

(E11)1F a. b are expressiong Lhen
("equal” . {a . b)) is an expression.
We use a, 5, ¢, d ele. to denole expressions.

We will call an expression defined by (E6) a fune-

tiom, (E7) a sequenbicl-and (E8) an ifthen-else,

{E9) & negalion. (E10) an application. and (E11) a

unification

2.4 abbreviations for expressions

We introduce [ollowing abbreviations for
EXPressions.

{a) fer a

fx lor (“free”. x)

§%z tor =

Fivle for ("free" . #Pz) (n=0)
a, b for {"and" . (a. b))

a, b, e for a. (b, ¢} ete.

Ae.b for {"lambda” . {a . &))

a; b for ("seqand" . (a . b))

@ b fer a; (b e) cle,

ilathen belsec lor {"if". (a.{b.c))}
-a for ("not*. a)

ab for {"apply”. {a. b))

abe lor fab)cele

<a> fer (A{).a)(}

a=0b for ("equal".{e. &))

fail fer O0=1

2.5 free variable

For an expression a, we define Lhe sel
FV{a) of free varialles in a. FV(a) is delined by
FVg(a) where FV_(a) {n = 0) is defined as lol-
lows:

g = § *z where z is a pure veriable —&

[il k=<n

Fv_(a) = feEngl i kZn
o is a glabal variable —= FV _{a} = ja}
ais a symbol == FV _{a) = ¢
FV, (*) = ¢
FV ([a. b]) = FV_(a) uFV ()
FV, (&, b) = FV, (a}uFV,(b)
FV_(ha.b) = FV_, (a)uFV_, (b)
FV_(a: b} = FV_(e)uFV_(b)
FV_(if a then b else c)
=FV, (el uFV, (0)uFV, (c)

15%

FV, (~a) = FV_(a)
FV,(a b) = FV, (a) UFV, (b)
FV.(a= b) = FV, (a) UFV (b)

This definitien means Lhat variables appearing in a
function or an U/then-part of if-then-else are
‘localized” bul Uhe efflect can be canceled by #s
preceding the variables.

Example
Consider Lhe expressions:

a =il fx=[] then §yelse b
b = il fx=[X1.X2] then ¢ else fail
e = {Au.foofu, #X1, § fy)){ sz X2)

Then we havao:

FV(a)

= FV,(#x=[]}vFv,(4y}uFV(t)

= jxfulyl vFV,(#x=[X1.X2]JuFV,(c)v
Fv(o=1)

= fxjuiyluixu
FVa(u)uFVy(foofu. # X1, # #y)v
FV ,((#z.X2))v ¢

= pxiuiylvixivéuifooylujzive

= lx.y.2 [oo}

o

3 UNIFICATION AND ENVIRONMENT

As we explained in Lthe introduction,
unification plays the fundamental role in our pro-
gramming language Qute. Especially, the facl that
unification enjoys a kind of Church-Rosser pro-
perty is Lhe key to make Qute a [unctional
language which permils parallel evaluation. Niar-
telli and Monlanari [5] introduced a nondeler-
ministic unification wslgorithm and proved the
Church-Rosser Lheorem for the algorithm. Lassez
and Maher [4] ulilized the Church-Roesser pro-
perty for unificalion, and proved the equivalence
ol various resolution strategies elegantiy, Jaffar
[3] considered lhe wunification problem for the
domain over regular infinite trees and proved the
Church-Rosser theorem for his algorithm.

Our unificalion algorithm, which we are
about to explain, econstitules a conceptuoal
simplificalion of Lhe algorithms by Martelli and
Montanari [5] and by Jaffar [3].

3.1 unificalion

We firslt define a paflem by the [ollowing
inductive definition.

{F1} A varioble is a putlern,
{P2) A symbol is a patlern.
(P3) = is a patlern.

160

(F4) If p, q are paetterns then [p . ¢] is a patlern.
{P5) If p, g are patierns then p, g is a patlern,

{P6) If a, b are expressions Lhen Ag.b is a pat-

Lern.

We use p, g, rto denote patlerns. We ncle thal
a paltern can be classified into 6 mutually disjoint
calegories (P1 - PB).

We define an egquabion as [ollows. There are
lwo Llypes of equalions, that is, marked and
unmarced An unmorked equation 15 a finite
nonemply sel of patterns. An unmarked egualion
is simple if all of ils members are variables. For a
simple unmarked eqguation A4, the singlelen sel
{4} is called @ mark A fnite sel such that (i) its
members are pallerns or marks end (ii} it con-
ftaing al least one mark is called a morked equation
We use 4. B, C Lo denote equelions. Infermally
an unmerked equalion means Lhat all the
members of Lthe equalion should be equated. The
meaning of a marked equalion will be explained
in seclion 5.

Consider lwo distinct patlerns which are nol
variables. They are defined Lo be fmcompatibie if
(i} they are two distinct symbels, (ii} they are two
different [uneclions or {iii) they belong Lo different
calegories. An equalion is sald le be inconsislent if
it contains Lwo palterns which are incompatible.

A finile (possible emply) set of eguations is
called a syslem of equalions or simply a system A
system is sald Lo be inconsisienf if it contains an
inconsislent eguation: olherwize iL is said Lo be
consisfeml We use T, 4, [l ete. Lo denole sys-
Lems. For a system I' we define a relalion -, on
I' as follows. Let 4 and B be equalions in T
Then A —, B il and only if Lthere exisis a pallern
p and a variable such thal (i) pe 4, (ii) xe 8,
(lii} p belongs to the calegory (P4) or (P5) and
{iv) z=FVig) A system I is said to condain a
loop il Lhere exist 2 sequence of equations
A, - A, (n=2) in T such thal

Ay =pdy =p 0 = 4
and A, = A, otherwise I is said Lo be [oop free

We now define a binary relation ' < 4
belween systems by Lhe following three clauses,

(1} It A, B are members of T and 4, B have a

variable in cammen Lhen
' = (I'=fdf—{8t) v jd v Bi.

{2) u ilp.ql.[p glicaceT then
r<rulip vl g gk

(3) u He. 9). (p. gHcAaer Lthen

r<ruiip pl te. g
W< 4&and I # & we say Lthat [reducesto A.
In this case I' is said to be reducible olherwise T
is said Lo be frreducible We lel 5 be the reflexive

and transitive closure of Lhe relation <. We then
have Lhe following theorems,

Theorem 1.

=4, end I'= A, then 4, = 11 and
by & [T for some 1.
Theorem 2.

There i3 mo infinife sequence of sysiems &4,
(1= 0} such that &, reduces o A, | foralli.

Theorem 3.

For any system [there umigquely ezisls on i
reducible & such thal "= A.
We will denole Lhe A in Theorem 3 by I'" and we
will eall it the solwfionof T

Theorem 1 states that the reduclion process
{or unificatien process) has the Church-Rosser
property and Theorem 2 states Lhat the reduction
process always lerminstes. Theorem 3 is jusl a
congequence of Theorems ! and 2. We do nol
prove Lhese Ltheorems here, and we refer to Salo
[8] for the prools of them.

4.2 environment

By the results of Lhe previous subseclion, the
unificalion process of Lhe given system T ends up
with the unigue selulion I'*. We Lhen have one
of Lhe following three mulually disjeint condi-
lions
{i) I'"is inconsistent.

{ii) I'"is consisteni and containe a loop.

{iii) I'" is consistent and is loap {ree.

Condilion (i) means lhe failure of unificalion.
Condition (i) ecorresponds te the [esilure by
oseeur-check of the usual unification algorithm. so
that in this case Lhe solulion must be regarded as
unacceplable if we were Lo solve the equalion in
the fimile sexps. (This alse means thatl it is possi-
ble Lo separate occur-check from Lhe unification
process.) On Lhe olher hand the same solution
becomes acceptable if we interpret it in the
domain of regulor infinile sexps. [n this paper we
take the laiter position, and consider Lhal the con-
ditien (ii) pives an acceptzble solution. {The
slory goes almost in parallel and is even simpler if
we consider (ii) as unacceptable.)

We, Lherelore, define an emvirontnent as a
consistenl irreducible system. 3o, for any system
I', I'* becomes an environmenl if and only if it is
congistent. We use £, F, & to denole environ-
menls. An environment £ is sald Lo be suspended
if & contains an equalion A such that (i) it con-
tains Lwo distinet marks or (ii) it conlains a mark
and & non-varlable pallern.

The value of a pattern is determined relalive
Lo an environment. Faor instance, if

£ = ix. v, i}.jz, 2}} then the value of [x. ¥,]
is [1, 1, 2]. In general, the value of 2 patiern p in
the envirenment £, which we will denote by pg.
is defined as follows,
{i) If pis a variable and there exisls no equation
in E which conlains p then pg = p.
(it) If pis a variable and Lhere exists an equalion
A in £ which conlains p then:
{ii.i) Il A is simple then py = p.
{ii.ii) else if there is a loop containing A
Lhen p. = p,.
{Bi.lil} else pp = gy where ¢ is a non-
variable pallern in A.
(iii} If p is a symbol then pe = p.
I:j'.'l.r]- sp = ok,
(v) [p. qlg = [pg . 2l
(vi) (p, 9)g = (P 9)-
I[\rh}ll[l\ﬂ..ﬁ}!- = b b
If isa variable and satizfies (i) or (i), we
say Lthal z is an undefined variable in E.

4 SEMANTICS OF QUTE

Here, we explain the semanlics of Qule
informally.

4.1 evaluable subexpression
For an expression a, we define Lhe sel Ea of
all Lhe evaluable subezpressionsof a as [follows.

Il pis+, asymbol, & variable or a funciion
Lthen Ep = ¢

Z[a. b] = Eaulb

E(a.b) = Cavib

La it Za# g
£(a; b) = |Lb fCa=¢pand Lh£ ¢
ta;bf HZec=Lb=4¢
E{if ¢ then belse c) = }if athen belse c
E-a = |~a}
fa bl [famEb=g¢
Laulb olherwise
ta=b] HEamEb=g¢
E{a=1b) = IEauEtl olherwise

Efa b)) =

It iz easy lo check thal for any expression a,
Ea = ¢ if and only if o is a paltern. 1f be€la,
we say thal b is an eveluable subexpression ol o.

Example
x = 1, 1{g{x), y = h{x}), (2 = [u, v]; kiz])

The evaluable subexpressions of Lhis expression
are

x =1, g{x), hix}, z = [u, v]

161

O

) 4.2 semantics

The evaluation of an expression proceeds by
selecling an evaluable subexpression nondeler-
ministically and by reducing iL following the rules
which we explain in the following. [f the reduced
evaluable subexpression has evaluable subexpres-
sions, they alse are Lhe candidates for Lhe selec-
tion. If Lhe reduction of an evaluable subexpres-
sion of a given expression [ails, then Lthe evalua-
tion of Lthe whole expression [ails. The evaluation
of an expressien terminates when:

{i} lhere is no more evaluable subexpression,
i.e. the expression is reduced bo a pattern.
{ln this case, we say Lthal the evalualion
succeeds.)

{ii} the reduction of an evaluable subexpression
fails.

{iii} every evaluable subexpression Iz suspended.
(The condition ef suspensicon is explained in
the following.)

Although an evaluable subexpression iz selecled
nondelerministically, Lhe resull of the evaluation
is unigue so long as it terminates because of the
Church-Rosser properly.

Qute evaluales an expression relative Lo an
environment and Lthe envireonment 15 changed as
Lthe evaluation proceeds.

Az is known from Lhe definition of an evalu-
able subexpression, wunification, sequential-and,
application, negation, and if-lhen-else are candk-
dales for an evaluable subexpression. We explain
when Lhey become evaluable subexpressions and
how Lhey are reduced.

We say thal an expression is renamed il each
free pure variable of the expression is renamed Lo
a new global variable and one § of each [ree
non-pure and non-global variable is stripped.

In the lollowing examples, we use [lo
represent one step of reduclion.

1. unificalion

a=b becomes an evaluable subexpression
afler o and & are reduced to patterns p and ¢. U
FE is an environment al thalt Ume. p and g are
unified under £, ie. F = (Evilp. qi})" is com-
puted. Ul F is inconsistent, Lhe reduction of p= ¢
fails. Otherwise, p=g is reduced lo p and
further reduetions proceed under F. The
environment is changed only by unificalion.

Example
z=[x.y]l.x=1¥%y =2 in £
z.x=1y=2 in £
Bz, %,y =2 Ink,

162

=2, X% ¥y InEy

where
Ey= ¢
E, = {fz. [z . yI}}
Ey = iz, [x . yl§. ix, 1§
Ey = {iz. [x . y}§. ix. 1}, iy, 2}

The value of 2, %, yin Eyis[1.2], 1, 2

Though this shows only one of Lhe possible
order of the reduction (2 = [x . y]. x = 1, and ¥
= 2 are evaluable subexpressions), the result is
the same irrespective of the order of the reduc-
tion. This holds because of the Church-Rosser
property of Lhe unifiealion algerithm. O
2. sequential-and

In reducing a; &, a 15 reduced Lo a paltern p
first and then b is reduced. If & is reduced lo a

pattern g, p; g becomes an evaluable subexpres-
sion and is reduced Lo g.

Example
t=[x.yx=1Ly=2 in &,
Bz;x=1,y=2 in £
=26y =2 in £

B zx ¥y in By

Bz, ¥y in £y

By in £
where E,, £, F, and £, are Lthe same as Lhose of
the above example.

Mote Lhat in this example the order of the
reduction i3 unigque. (See Lthe definilion of the
evaluable subexpression.) [J
3. application

ab becomes en evaluable subexpression
after a and b are reduced Lo pallerns p and g.
This means applicetion iz computed by call-by-
value. If the value of pis Aa.b, o, b is renamed
te @' & Lo aveid the collision of names. pg is
reduced Lo a’=g; &, Le. the formal parameter o’
is bound to Lhe aclual parameler ¢ by a'=¢ and
then the body b is reduced.

Example

cohs(1.2) In Fy

= (2. yd=(L2} [».¥] in F,

= (xy'): [x.y] inF,

= [x.y] in F
where

Fp= Heons, Ax.y.[x.¥]H

FomoFyou HGey), (L2 B 1 by 2)
The value of [x'.¥]in &, iz [1.2). O
4. negation

Roughly speaking, -a iz reduced Lo {) if Lhe
evalualion of a fails, and the reduction of - a [ails
il @ is reduced Lo a patiern. This, however, is a
problematic definition. We point out Lhe problem
by an example. Consider the evalualion of the
expression:

={x=0), x=1

in the empty environment. Bolh ={x=0) and
x=1 are evaluable subexpressions. Il -~(x=0) is
reduced first, Lhe reduction fails because the
evalualion of x =0 succeeds and the evaluation of

the whole expression fails. If x=1 is reduced
firsl, ={x=10) is reduced under Lhe environment
iix, 1}, Therefore the reduction of x=0 [ails

and -{x=0) iz reduced to (). This contradicls
Church-Hosser properly which we are going te
establish. Reconsider the former case. Inlul-
tively, failure of =(x=0) means x s nof 0. How-
ever, since x is an undefined variable at that Lime,
Lthe value of x may become 0, 1, or some other
value laler. Thal iz, il is too eariy Lo decide that x
is nol 0. {The condilion that x is nol 0 cannol be
explained in the envirenment.) Therefore the
decision should be suspended until x ig instan-
tiated enough lo decide whether x iz 0 or not, ie.
in thiz caze until x =1 iz reduced.

In general, —~a iz reduced as follows. Lel £
be Lhe envirenmenl, ¥ be the set ol free vari-
ables of @, FVL be the list of free variables in
fx, | z= ¥}, and o', E' and FVL' be the copies of
a, £ and FVL. a' is evalualed under £

{1} If the evaluation of &' succeeds, Lhe slate of
FVL' iz divided inle Lwo cases:

(1.1) FVL" iz nol instantjaled. In this case, o
can be evalusted under Lhe original
envirenmenl £ without affecting it, i.e.
Lthe evaluation of a will succeed what-
ever instantialion may be done on FVL,
Therelore the reduclion of ~a immedi-
alely fails.

(1.2) FVL" is instantiated. In this case, FVL
may be instantialed later and the instan-
tiation may be incompatible with FYLY
Therefore Lhe reduclion of =a should
be suspended until later.

{2) If the evaluation of a' fails, it will fail what-
ever inslantialion may be done on FVL.
Therefore ~a is immedialely reduced to ()
and [urther reductions proceed under £
(The environment is nol changed.)

{3} If the evaluation of &' is suspended, the
reduclion of -a is suspended and will be
tried again later.

MNegation can be defined by il-then-else. Ibis
iefl as a primitive only for convenience,

8. if-then-else

In reducing if a then belse ¢, a2, b is renamed
le a', b'. if athen belse ¢ is reduced to b if Lhe
evaluation of @’ succeeds and if o then belse ¢ is
reduced Lo ¢ if the evaluation of o' lails. How-
ever, just as in Lthe case of negalion, the decision
whelher Lhe evalualion of a' succeeds or nol
should be suspended as needed. Therefare, the
reduclion mechanism is the same as thal of nega-
Llion excepl thal Lhe sel V in the explanation of
Lhe negation is the set of free variables of <a=>
{not a').
Example (Eratosthenes' sieve)

We use the abbrevialion ab == ¢ flor
a = Abog.

primes(j} == integers(2, i). silL(i, j}.
gil(i, j) ==
if #i = [p.1] then
#i = [p.J], Glter{l, p, r), sift(r, 4}
elaa
fail.
filter(i, p, 1) ==
if §i = [n.I] then
if mod(fn, # fp) = 0 then
filter(#1. # fp. # #1)
else J
fr = [= . R], Glter{l, §p. R)
else
fail.
integers{x, [x . 1]} == integers{x+ 1, 1),
outstream(l) ==
if #1 = [x. L) then
write{x); outstream(L)
else
fail.
Lel £ be Lhe environmenl after Lhe above expres-

sions are evalualed, i.e. the above [unclions are
defined. [f lhe expression

primes{i}, oulstream{i)

is evaluated under £ and the compulalion is fair
(i.e. every ewvaluable subexpression is reduced
afler a finite steps of Lthe reduction). a sequence
of prime numbers is printed without Lerminalion.
O

MNote Lhaet if-parl of if-then-else works as the
synchronizalion mechanism, which is similar to
thal of Parlog [1] and Lhal of Concurrenl Prolog
in a sense. Though our first metivallon was not
to invent such a synchronization mechanism bul
Lo find the nalural semantics, we oblained bolh as
a result.

9 FOEMAL SEMANTICS
Here, we define a complelely [(ormat

163

semantics of Qule. First we give some definilions
and then define the semantics,

5.1 definilions

An element of the Iree moneid 0, 1}° is
celled a path We use o, 7 ele. Lo dencle paths.
The emply path {i.e., emply word) will be denoled
by A. For a path o and sexps 5, u, we define
5,[u] as follows:

sufu]l = u

(5. t)p lu)l = (s [u]. 0}
[s. tlg lu] = [s,[w] . ¢]
(s.2) [u] = (s. ¢ [u])
(s. yolul = s]

Informally, 5_[u] means the result of substiluting
u [or Lhe subsexp of 5 which can be reached [rom
the roct of & by fellowing the path o. (Here, the
characler 0 (1) in the palh ¢ means Lo take Lhe
left (right, resp.) sublree.)

We will somelimes regard a path ¢ as a sexp
by the following identificaticn:

A ls identified with »
Og iz identified with [0 . o]
le is identified with [1 . o]

A sexp of the form ("gvar" . (£. o)) where s
is a glring and ¢ iz a path. is also called a globeal
wariatle For a wveriable r = ("var”. s} and a
path o. =z, will denole Lhe glebal wvariable
("gvar" . (s . a}).

For an expression a and a path o, we define
an expression afe by adye where el o {n=0)

is defined as [ollows:

q mr #‘r wherg x is a pure variable =
a il k=n
ab o = |z if k=n

¢
4 k=1 g il k=>n

o iz a global variable == ai ¢ = a
ais asymbol == al, 0 = a
t.l.“g m o«
[a.bli0 =[ai a. b o]
(a, t)i, 0 = (as,a), (b 0}
{Ae. by o = Alat,, o) (bi,, 0)
{a: b)t, o = {at o) (bi o)
(if a then & else c)i, 0
= (if at, o then b: , o else £i o)
(=a)i om = {01 g}
{a b)s o = (ai o) (b4, o)
fa= b}, o = (ai,0) ={bi_a)
+ iz used in reducing applicalion. (See Lhe rule

below.) ¢ is a formal definition of the renaming of
an expression which we explained in secltion 4.2,

164

Example

{((Ax.x= Fylydeg = Az =y)vn,
{if #x=[uv] then fool fx, #y.v) elze yHy,
= (if x;; =[u.v] then foo(x .y ,.v) else y)

]

We redefine Za as a set of paths so Lhal the
occurrence of a subexpression can be indicated
expliciily.

If pis * asymbol, & variable or a funclion
Lhen Zp = &

Ela. #] = 0Zauwiih

(e, b} = I0EauilEh

10Ea ilZazg
L(a; 6) = |11Zt6 U Ea=g¢and Eb & ¢
bad HEa=Eb=g

I{if cthen belse ¢) = jaf
E-~a = jA}

N ifla=Lh=¢
Z(ab) = I0Eavl1lZd olherwise

jal HEa=Eb=4¢
La=8) = |16rqu1156 otherwise

I iz again easy Lo check that for any expression o,
Ea = ¢ if and only il a iz a paltern. We will call
an expression a redezif g = JAl

Henceforth, we will use the nolalion a[8]
only when ¢€Ea. Furthermore, we will use the
netation a (&) lo denste an expression a such
thal a [4] = a. In this case we say thal & iz an
evaluable suberpression of a. We note thal anp
evaluable subexpression is a redex.

5.2 semanlics

We will call &8 pair of an envirenment £ and
an expressien e a form and will use Lhe nelation
E[all for it. Moreover we include L and !
{which we call foil and suspension, respectively) as
ferms. We will use e, f. g ele. Lo denote forms.

We now define a binary relation = on [orms,
which represenis Lhe reduction slep of forms
Aclually we define the relation = for each path
o. Then the relelion = will be defined as = ,.
In the following, =, denoles the reflexive, transi-

tive closure of = .

We will call a form e nermalil e &= f holds
for no f.

In the lollowing rules, it can be seen that
environments are changed only by unification,
and Lhe rules of subexpression show how such
change of environmenls affects Lhe evalualion of
olher subexpressions,

For an envirenment £ and an expression a,
we define Lthe environment E{a) as follows. First
we lel V be Lhe colleclion of all Lhe free variables
appearing eilther in @ or in seme equaliens In F,
and we put F = (£ u izi| ze V})". Then we
define E{a) by:

E(a) = (F—}4 | A issimple and 4 € F{)u
11diuv 4 | A is simple and A € F}

This kind of an environment iz used in Lhe rules
of if-then-else and negalion so that the marked
equations detect suspension. {Recall Lthe
definition of the suspended environment in sec-
tion 3.2.) However, unlike the informal explana-
tior in section 4, the stale of suspension cannoct
be recovered. Therefore, eg. in evalualing
={x =0}, x=1 in the emply environment,

#[-~({x=0).z=1]
B, Hx [~(x=0). x]
B, Hx tfi0 () =1

is the enly possible order of Lhe reduction. The
rules of suspension appearing in 2, 3, 4, 7 and 8
below show when and how Lhe suspension of a
subexpression causes Lhe suspension of the whole
expression.

L. subexpression

Efla]] =,, J':[ﬁ]] —
Ef e {a)l =, FIL e, [8]]
Efal =,, L == E[c,(a}] =, 1

. list

Elal 2ot = E[[e.q]] =,

E[["-'"]] [:,.“]! = EE[P'b]ﬂ Pn’"

Efall =0 b EMlel By ! ==
Ef[a.8]] &, !

3. and

Efall &pp! = Efe q] &, !
E[bt] &,y == Ef[p 6] &, !
El el gy !s ElB] &,y =

Ef e, b] >,

4, sequential-and

Elp: gl &=, £l q]
Efall Bog! == Efa] =, !
Efs] &oy ! = Efp o] =

5. i-then-alzse

El=a=)[=a=] =, Flp] ==
E[[if athen belse c] =,
FlL=#8=1] il Fis not suspended
i if Fis suspended
El<az)[<a=] z2,1 =

E[if cthen belse c] =, Efc]
El<az»)[<a>] &, ! =
E[if athen belse c] &, !

6. negalion

E(a){ ¢l =, Fip] =
L if Fis not suspended
El=a]l =4 | it 7 is suspended
E(a)fe] =, L = E[-al &, ELQ]
E{e)[all =,! == E[-a} =,!

7. application

Elpql =,

Ef aso = g bag] U Pe = (Aa.b)
! if pp is a variable
L otherwise
Elall gp! == Elaq] =,!
Efb] &gy ! = Elpt] &,
Efal B g o Ef 6] F.nt ==
Efatl &,' .

8. unificalion
1 if F iz incongislent
Elp=4q] =, FIpl otherwise
where P = (Euiip, gii}’
.El-ﬂ.n 5:"“.1“-' = EI'“:q]] r“'r!
E[b] =, = Elp=t] &,
EEEB bd‘lﬂl' EE b] D‘ﬂ‘ll! -
E"g=b]] -':'w!'

We now have Lhe following theorems which
caplure basic properlies of reduction processes.

Theorem 4.

[fexz f, and e = f; then f, =2 g ond

Ja = g for some g,
Theorem 5.
Ifex [, ad e = f, and [, and f, are
both normal then f; = fa.
Theorem 6.
A form e is normal if end only if
(i} e= L
(i) es=!or’
(iii} e = EQp] for some envirommen! £ and pat-
lerm p.
The meanings of lthese theorems should be clear.
We refer to Sato [6] for the proofs of these
theorems.

[1]

[2]

(2l
[4]

(]
(71

(8]

165

REFERENCES

Clark, K. and Gregory. 5., 1984: PARLOG:
Parallel Programming in Logic, Research
Report DOC 84/4, Imperial College.

Gerdon, M., Milner, R., and Wadsweorlth, C.,
1979: Edinburgh LCF, Leclure Noles tn Com-
puler Science 78, Springer-Verlag.

Jaffar, [, 1984: Efficient Unificalion over
Infinite Terms, prepring Monash University.

Lassez, J-L. and Maher, M.J., 1984: The
Semanbcs of Logic Prograoms Oxlord Univer-
sity Press, i preparation

Marlelli, A. and Monlaneri, U., 1882: An
Efficient Unification Algorithm, ACM Tren-
saction on Progromming Language and System,
4, 258-282.

Selo, M., 18984: Theory of Symbolic Expres-
sions, Ill. i preparalion

Zalo, M. and Sakurai, T., 1983: Qule: A
Prolog/Lisp type language [or logle program-
ming, Proceedings of the Eighth Initernational
Joinl Conference on Arfificial fnielligence, S07-
513.

Zato, M. and Sskurai, T., 15984: Qule: A
Matural Amalgamation of Prolog and Lisp.
dJowmal of Future Ceneralion Compuler Sys
tems Morth Helland, fo appear

[9] Shapire. E.Y.. 1983: A Subsel of Concurrent

[10] Shapire, E.Y.

Prolog and [ts lnterpreter, ICOT Technical
Report, TR-003,

and Tekewchi, A., 1983
Object Oriented Programming in Concurrent
Prolog, New Ceneralion Compiling, 1, 25-48.

