PROCEEDINGS OF THE INTERNATIONAL CONFERENCE

0N FIFTH GENERATION COMPUTER SYSTEMS 1984,
edited by ICOT. @ ICOT, 1984

669

MORE ON GAPPING GRAMMARS

veronica Dahl

Department of Computing Science
Simon Fraser University
Burnaby, B.C. V5BA 156

ABSTRACT

Gapping grammars (GGs) are logic
grammars that may explicitly refer to
gaps in between constituents —i.e.,
te unidentified intermediate
substrings of symbols, A gap G is
referred to through a special,
system-defined symbol: gapiG), and
can be rewritten inte any position in
the right hand side of a rule. GGs
include as special cases three other
types of logic grammars: definite
clause grammars, metamorphosis
grammars and extraposition grammars.

GG rules have the form:

2,80,9apl(G,),a,,9aplG,),...,
gap(G, }, a . —> §.

with a.e(y, v % :Iu: aeV,, and
BelVyw V. T)*

vhere I'={gap(G,),gap(G,},
--.,gapiﬁnii,
G are variables ranging over
(v, UV)%,

and V.and V,are respectively the
termipal and non terminal
vocabularies of the gapping
grammar .

This article discusses how GGs
can be exploited to produce natural
and concise formal language
descriptions, and how they can
powerfully help capture several
linguistic phencmena: ceoordinatien,
free word order and right

extraposition.
1 INTRODUOCTION

. Since the development of the
first logic grammar formalism by
A.Colmeraver in 1975 (Colmerauer
1978}, and of the first sizable

application of logic grammars by the
author in 1977 (Dahl 1981), several
variants of logic grammars have been
proposed, sometimes motivated by ease
of implementation (Definite Clause
Grammars, DCG, (Pereira and Warren
1980}), sometimes by a need of more
general rules with more expressive
power (Extraposition Grammars, XGs,
{(F.Pereira 1961)), sometimes with a
view towards a general treatment of
some language processing problem such
as coordination (Modifier Structure
Grammars, MSGs, (Dahl and McCord
1983))} or of automating some part of
the grammar writing process, such as
the automatic construction of parse
trees and internal representaticons
{M5Gs, op. cit, DCTGs, (Abramsen
19841). Generality and expressive
power seem to have been the main
concerns underlying all these
efforts.

Gapping grammars (GGs) are logic
grammars meant for analysis, whose
rules may explicitly refer to gaps —
i.e., to unidentified intermediate
substrings. They were designed by the
author, as a generalization of
extraposition grammars, and further
investigated in joint work with
Harvey Abramson (Dahl and Abramson
1984), with emphasis on
implementation details.

Here we examine some of the
problems we feel them suited for,
both for formal and for natural
language processing, In particular,
we propose a GG treatement of free
word order. We argue that, although
implementation details are not
definitely settled (the current
compiler being somewhat inefficient}),
the potential uses of GGs are worth

studying.

Section 2 describes the gapping
grammar formalism. Section 3 examines
a small gapping grammar for natural

670

language as an illustration on how to
think in terms of gaps. Section 4
shows how, in some cases, GGs allow
us to avoid artifices like adding
extra grammar symbols that do not
stand for constituents but serve some
procedural-oriented goal, like
counting symbols, Section 5 examines
how the exzpressive power of GGE can
be used to not only obtain more
concise but also more efficient
formulatiens than in other grammar
formalisms, Efficiency here is
considered with respect te the number
of backtracks upon user-defined
grammar symbols in our compiler
formulation. Successive grammars for
the same sample language are
discussed, Section € proposes a GG
formulation for representing free
word order rules without multiplying
the number of rules, and section 7
presents a small English GG with left
and right extraposition. Some
knowledge of Prolog is assumed.

2 DESCRIPTIOCHN

GGs make use of a
system-defined, non-terminal grammar
symbel, gap{G}, te refer to a
substring G whose actual composition
is of no present interest, but that
stands in between grammar
constituents we are interested in.
Other than for the fact that this
special symbol is not user-defined,
GGs look very much like metamorphosis
grammars {Colmerauer, 1978): a GG
rule has the form

a,a—>=f.

vhere "a' is a non-terminal grammar
symbol (different from 'gap(G)'}), and
a and B consist of terminals,
nen-terminals, gaps and Prolog calls,

For instance, the rule

nominative, gap(G) —»
gap (G}, [W] , {nem(w)}.

expresses that a nominative
constituent followed by some gap G
can be rewritten into the gap
fnllnwed by & word that satisfies the
nom' property. We adopt the DEC-10
convention that terminals are
enclosed in square brackets, and
Proleg calls, in brackets, Variables
start with a capital letter.

We can now define gapping

grammars more formally. Let F be a
set of functional symbels, including
the unary symbol "gap", and V an
enumerable set of variables. Let H bae
the set of terms constructible from F
and ¥V, i.e.,, the set of formulas
consisting of either a variable, a
constant {i.e., a functional
eipression of O-arity) or an
expression f{t,,...t_), where f is a
functional symbol of arity n and the
t; are terms. Let H be the saet of
ground terms (i.e,, terms containing
no variables) in H. Let V< H, called
the terminal vocabulary. Let V,c H,
called the non-terminal uacabdiary, W
W, =¢. Let TV, ,called the set of
?ap symbols, be a set of the form:
9api(G,),gapl(G;),...,qap(G.)}, where
the G; are variables, Let V& Vy be
the set of start symbols., Let P he a
?et of production {meta)-rules of the
Orm:

nt,ﬂ.g,gap{5|:|;ﬂ:|----r

?apiﬂﬂ}.uw——éﬁarga?
Gfljfﬂ1r---:gap[g|: llﬂm

where m,nz0,nteVysa,, B, e (V, Uv)
ygapl(G;le ', and for all I, Iﬂijsn.
Let ==> be a rewriting relation on (v,
v V)", defined as follows:

U s=> v <==» there exists a
production rule

ﬂfo:ganGIJ;ﬂrn LA |
QEP{G,..,} P &, == ﬁn rqap{G{]:
Bvveva,gaplG), . !
and some substitution € of terms for
variables, such that

ud =gy 7, u{ “wady 18 for scme
(s " (V, v v J* N
Ve ﬂq "IL-H rea "_r.ﬂ]ﬁ'
S by ™

The guintuple G=(V,,v, I,V ,P) is
called a gapping gramma .9

We now define =%=> to be the
reflexive, transitive closure of ==,
The language generated by G is

L{G)={tev" faﬁeg
with § %=]

Notice that each of the metarules in

P stand for all instances of it —
i.e., for all rules obtained from the
metarule by substituting terms fer

variables,

Although terminal symbols may
contain variables, in practice
giammars are usually written such
that they describe ground strings
teV' , i.e., strings teVen H. hgso
notice that we have left Prolog calls
out of the formal definition, in
order to keep it simpler. Prolog
calls appearing in a metarule also
become affected by the substitution
used vhen applying the metarule, and
become executed during this
application. Their failure results in
that rule's applicatien being
blocked.

Motice that XGs are a special
case of GGs, where zll gaps menticned
in the left-hand side are rewritten
in seguential order at the end of the

right-hand side. Alse, XGs allow no
Proleg calls in the left-hand side.

As in metamorphosis grammars,
which are also included in GGs, for
each non-terminal 'nt' contained in
the left-hand side of a rule, we need
a "normalizing”™ rule of the form

nt —> [nt]

where "[nt]' is a pseuvdo-terminal
that deces not occur in the original
grammar. As these rules can be
constructed automatically by a
grammar preprocessor, we shall
consider them transparent to the
user, and disregard them in all that
follows.,

3 THIHNKING IN TERMS OF GAPS

A gap may be thought eof as a
substring in the sentence to be
analysed, that is separated and
repocsitioned unanalysed, to be later
parsed in its new location. Since a
grammar relates terminal strings to
strings of constituents, we can also
imagine a gap as a string of
constituents to be repositioned by
application of the gapping rule.’'
'Hormalization, mentioned in the
previous section, keeps gaps as
strings of either terminals or
pseudo-terminals, but, conceptually,
we can disregard the normalization
rules and refer to strings of
constituents.

671

We next illustrate this through
a simple grammar that handles
sentence coordination and
reconstitutes the meaning
representation of an elided object.

sentencef{and(51,82)) —=>
sent{S1),and,sent(852).

sent{5) —> name(K),
verb{K,P;5) ,object(P).

object(P) —> determiner
{2,P1,P),noun{X,P1).
object (P} —> [nt-object(P)].
object(P),and,gapl(G},
object (P} —> [and] ,
gapi{G),object(F),

determiner(X,P,the{X,P}) —=
{the].

noun(X,train{X)) —> [train].

name{mary) —> [mary].
name{john}) —> [john].

verb(X,¥,sawlX,¥}) —>
[saw].
verb({Z,¥,heard(X,¥)} —=
[heard],

The third rule for 'objeet’
elides an expected object followed by
a gap and reconstructs its internal
reprgsantatiﬂn "P' through
unification with the meaning
representation of the object in the
second sentence. The gap in between
"and' and the object is recopied
unanalysed.

A derivation graph for the
gsentence "mary saw and john heard the
train' might help visualize the
working of the grammar, shown in fig.
1.

We have labelled each rule
application with the substitutions
used, and circled the gap. The final
value obtained is:

S=and(saw(mary,the(X, train(X}}},
heard{john,the (X, train{x}}))

Specific rules for coordination
were, in fact, my motivation for
developing GGs. Subsequent work,
jointly with Michael McCord, resulted
in a very specialized type of
grammars — modifier structure
grammars — that handle coordination

672

Sentence(s)

Srand(51,52)

sant({s1)

namal(k} wvarbikK,P,51) obiect{pr)

amnd n-ntt;:f

T]
nnIT[K} varb{T1.P1.Gz} object{P1)

Kamary Slvamwl{mary P}]

F

mary Sat

Bl name (K1)

varp{K1,P,52)

K1i=jonhn

Jaihn

in a more general, metagrammatical
way (Dahl and MeCord, 1983). S5till,
where specific rules are concerned,
coordination is a good example of the
need for repositioning gaps, as the
elided fragments may not be full
constituents, but be instead made up
Erom fragments of different
constituents.

4 AVOIDING ARTIFICES THROUGH
STRAIGHTFORWARD USES OF GAPS

In (Dahl and Abramson, 1984), we
presented the following GG for the
language {a" b'c™}:

5 —> as,bs,cs.

as —= [1.
as —> xa,lal,as.

bs —= [].
x2,gaplG) ,bs —»
gap(G),[b], bs,xb,

¥b,gaplG),c5 —> gap(G),[c],es.
cs —> [],

This grammar uses marker symbols
'#a’ and 'xb', whose only function is
to leave traces of right-extraposed
8's and b's, in places where they can
easily be evened out with b's and
c's, respectively,

This grammar was presented as an
argument for freer repositioning of
gaps than in XGs, and contrasted with
the correspending %G, which uses
markers for left-extraposed symbols,
Our GG formulation was found to work

oh1a{.‘tﬂP‘F

detersiner(X, Fi p) Agn{ X, P1)

S2=heard(john, P)

P=thalx . P21} Pletrain(x)

tha train

Figure |.

more eEficientlg than the g one,
with respect to the compiler
implementatien,

However, thinking in terms of
markers is in many cases simply a
residue from the constraints imposed
by le=s powerful grammars, This
language can in fact be simply

described as follows:

1) 5§ —=x as,bs,cs,

2) as,?apiﬁll,hs,ga (G2} ,c58 —>
[al,as,gap(G1}, bl,bs,
gap(G2),[cl,cs,

3) as,gap(G1),bs,gap(G2),c5 —>
9ap(G1),gap{G2),

Rule (2) simply evens a's, b's,
c's with a, b, and c, by skipping any
intermediate strings as gaps G1 and
G2, which are repositioned after
regenerating as, bs, and ¢s in the
right-hand side. Rule (3) simply
makes as,bs and cs vanish by only
recopying the gaps found in between,

Similarly, the language {a"b ¢ d "
I, for which we showed a GG .
formulation with markers in {Dahl and
Abramson, 1984) can be more easily
formulated as follows:

5—> as, bs, ¢s, ds.

as -QEP{G] 3 CB=——D0
[a),as,qap(B),[c],cs.
as,gaplG) ,cs—> gaplG).

bs,gap(G),ds—> [b],
gbs,qap{ﬁ},[ﬁ].ds.
bs,gaplG) ,ds—> gaplG).

5 MORE EXPRESSIVE POWER NEED NOT MEAN
LESS EFFICIENCY

In our compiler implementation
of GGs, too much backtracking results
due to the fact that the 'gﬂp{G}‘
predicate is merely a wversion of
Tappend', which breaks the input
string into a gap G followed by a
remainder, in a non-deterministic
way. After this experimental stage,
we hope to present a more efficient
implementation of gap determination,

which dees not sacrifice the
conciseness of our compiler. In this
sense, we are presently examining
ways of modifying the strategy for
executing the compiler's cutput,
atter having ruled out several other
options,

For the time being, let us
assume that the gap determination
problem has been solved in the most
efficient manner possible, and let us
examine how having more expressive
power affects the performance of the
user-defined grammar constituents.

= ~ -Take for instance the "scrambled
abec " problem, where sentences
consist of an egual number ?f a's,
b's, and ¢'s, but mixed up in any
order, In the first approximation to
this preblem, the power of XGs
gsuffices. The idea is to write rules
of the form:

as,gap(G),bs —> [bl,as,gap(G).

which might be read as: if a 'b’
appears instead of an expected 'a' at
the beginning of the input string,
skip any intermediate constituents
until reaching a 'bs' symbol that
does look for b's, and even them out,
while recopying the unsatisfied 'as’'
and the unexamined gap.

The complete grammar follows.

5 —»as5,bs5,0858,5.
g —>» [].

673

as —>[al.
as,qaplG),bs —> [bl,as5,gapl(G).
as,gap(G),cs —> [¢],as,gap(G).

bs —=[b].
bs,gaplG),cs —> [c],bs,qapl(G}.
bs,gapl(G),as —> [a],bs,gaplG}.

W

cs —> [el.
¢s,qap(G) ,as —> [al,cs,gap(G).

cs,gapl(G),bs —

W

[bl,cs5,gap(G).

All these gapping rules rewrite
gaps into rightmost positions, so
they are strictly EG rules. Without
leaving the XG formalism, we might
collapse the three sets of rules for
‘ag, 'be', and 'es' {which are
symmetrical) into just three rules
plus the artifice of adding "start’
and 'end" symbols in order to keep in
good terms with syntax. The rationale
here is: upon hitting an 'a' as
starting input symbol, skip any
constituents until you reach the 'as’
to even the "a’' out with, and then
rewrite the skipped gap. If syntax
permitted, we would write:

gaplG),as —> [al,gap(G).

But, since rules should start
with a non-terminal symbol other than
gap({G), the complete grammar reads:

g —> start,sl,end.

gl —»asg,bs,c5,51,
sl —= [1.

start,gap{G),as —= [al,
start,gapl(G).

start,gap({Gl,bs —> [b],
start,gapl(G).
start,gaplG),cs — [c],

start,gap(G).
start,end —> [].

While in the first formulation,
scrambled sequences of m letters (in
the example, m=3) require m rules
plus the twe rules for "s', in the
second one we get away with just m
rules plus the four rules for 's',
's1", and 'end'., Alas, while the
first formulation parses strings in
the language without ever
backtracking upon 'as', 'bs', or
'cs', the second one backtracks on
the "start' predicate upon all
possible string rearrangements, until

it finally hits the good one and

674

succeeds.,

If we use the full power of GGs,
however, we can arrive at the
exceedingly simple formulation:

5 —> as,bs,cs,s.
g8 —3s [].

as,gap(G) —> gap(G),lal.
bs,gap{G} —> gap(G},[k].
cs,gaplG} —> gapl&l,[c].

which not only makes the number of
rules linearly rather than
exponentially dependent on m without
any artifice like 'start' and 'end',
but alse happens to head directly to
the sclution without even once
backtracking on any user-defined
grammar symbols. Rearranging gaps in
an arbitrary fashien allows us a very
efficient, lexicon— driwven
formulation: when trying to expand
‘ag', simply skip any intermediate
symbols until you reach an 'a', and
retain the gap for futher analysis,

& GGs AMD FREE WORD ORDER

The above suggests a vary
concise and efficient treatment of
free word order, a problem that many
languages exhibit to some extent. The
problem is that, since inflections
rather than position are used to
indicate case or grammatical
function, position is used to
indicate emphasis or focus, and
almost any possible ordering becomes
acceptable. For instance, the
Sanscript phrase 'Ramauh pashyati
Seetam' (Ramauh sees Seetam) can also
appear as:

pashyati Ramauh Seetam
pashyati Seetam Ramauh
Seetam Ramauh pashyati
Seetam pashyati Ramauh
Ramauh Seetam pashyati

This kind of free order of sister
constituents where each retains its
integrity is easily handled within
gapping grammars, in a similar way as
in eur last example (e.g. sample rule
in Section 2), More interesting is
the case in which even the contents
of constituents appear to be
scrambled up with elements from other
constituents (e.g. as in the Warlpiri
language). Even in Latin or Greek,
phenomena such as discentinuous noun
phrases, which would appear as

extreme dislocation in prose, are
very commen in verse {and not unusual
even in certain prose genres (e.qg.
Blate's late work, such as the Laws).
A contrived example for Latin would
be:

Puella bona puerum parvum amat.
(Good girl loves small boy)

where the noun and adjective in the
subject and or object noun phrase may
be discontinued, e.g.:

Puella puerum amat bona parvum,

In fact all 5! word permutations are
possible, and we certainly do not
want to write a separate rule for
each possible ordering. In GGs, we
Can simply write:

sentence —> noun-phrase{nom),
neun-phrasel(acc), wverb.

noun-phrase(Case} —x
adjective(Case), noun(Case),

noun{Case), gap(G) —> gapl(G),
[wWord],
{dict (noun(Case),wWord)}.

adjective(Case},gap(G) —> gap(G),
[Word], {dict(adjective
(Case), word)},

verb,gaplG) —> gap(Gl,
[Word], {dict(verb,Word)}.

dict{verb, amet),
dict({nounlace), puerum},

dict (noun{nom}, puella).
dict(adjective(acc), parvum),
dict{adjective({nom), bona).

Another approach to free word
order iz the augmented phrase
structure one [Pullum, 1982]. In
Pullum's formulation, phrase
structure (meta) rules only indicate
immediate dominance, and are
supplemented with linear precedence
restrictions to indicate what
orderings are allowed., For instance,
the meta rule » —» B,C,D, together
with on empty set of linear
precedence restrictions, stands for
all rules where A rewrites inte B, C
and D in any order. With the
restriction: {D C}, on the other
hand, it represents only the rules:
{A —> BDC, A —> DBC, A2 —> DCE].

While this notatien is concise and
expressive for free or relatively
free ordering problems, it becomes
costly as more orderings are fized.
Also, since precedence restrictions
are attached to the whole set of
phrase structure rules, it can only
deal with grammars in which any two
constituents that have been stated to
have an order appear in that order no
matter what their origin. Gazdar and
Pullum make the hypothesis that
grammars of natural language will all
possess this property.

GGs, on the other hand, can
describe different orders of same
constituents coming from different
rules guite straightforwardly, so
they will be appropriate even if the
above mentioned hypothesis turns out
to be wrong, or if we want to process
formal language grammars that do not
satisfy it. They alsc seem more
versatile in being able to deal with
both fixed and changing crder with no
significant change in cost.)

Another difference is that GG
rules, like all logic grammar rules,
may stand for infinite sets of rules.
It suffices for them to contain a
variable, and all rules generated
from them by substituting a term for
the varible are represented,

1f the wariable in guestion
happens to be a gap argument,
moreover, all rule instances where
the gap has been replaced with any
parsing substate become represented.

In this sense, GGs are also more
powerful than the augmented phrase
structure approach. It is important
to realize what kind of a
meta-grammar formalism the GG one is,
1t is pot a device that will generate
all specific rules for a grammar
before the actual parse. It will
process the GG rules written by the
user, unmodified, and discover,
during parsing, only those rule
instances that are relevant to the
particular sentence being analysed.
Virtual rules are thus made present
on demand through unification, while
all that is actually stored is the
concise, gapping formulation of the
grammar .

6.1 Lexicon-Driven Free Word Order
with Options

Another interesting problem that
can be handled in GGs is free order
of constituents that may or may not

675

be present, as determined by other
constituvents. Let us assume that each
particular verb reguires its own set
of constituents. Then we could
include an argument in the verb
symbol, telling uws about its specific
reguirements. Module notaticon, this
would look like:

sentence —> verbh{R),R,

verb{R) ,gap(G} —
gaplG),[W], {ver{w, R}}.

neminative,gapl(G} —>
gap{GI,?H ,fnom{w)}.

accusative,gap({G) —>
gap(G) ,?w face (W)},

ver{pashyati,[nominative,
accusative]).

nomiramauh).

acc{sestam).

These examples, although
oversimplified, suggest that GGs
might be an appropriate computational
tool for processing lexical
functional grammars (Kaplan and
Bresnan, 1981},

7 GGs AND RIGHT EXTRAPOSITION

In Section 4, we have argued
that we should not only be allowed
right-extraposing formulations of a
grammar as a matter of personal
preference or efficiency
considerations, but we should alse be
given the liberty to reposition the
gaps referred to arbitrarily, in
order to do away with artifices, like
adding extra grammar symbocls that do
not stand for constituents, but serve
some procedural— oriented goal, like
counting symbols.

A further argument for
expressing right-extraposition
directly is the fact that, in natural
language, socme movement phenomena are
more naturally viewed as right rather
than left-extrapesition, although
they could perhaps be forced into
left-extraposing formulatiens.

We next show a small English
grammar with a relativization rule
expressed as left-extraposition and
another rule for extraposing the
whole relative clause to the right.

676

Both rules can interact in the same
sentence, as the example shows.

Notice that, despite our
advocacy of the non-addition of extra
symbols, in this example we are using
symbols such as "trace'. We do not,
however, consider these an artifice,
because, as opposed to the markers
'xa', and 'xb" in Section 4, traces
have linguistic reality in natural
language and can be viewed as
constituents in their own right, as
part of the grammar, Dptside any
considerations on parsing. The
following grammar parses sentences
such a5 'The man is here that Jill
gaw' into logical structures such as:

the(X,and(mant(X),saw(Jill,x}},
here (X))

sentence(P) —>
nplXE,P1,P) ,vplX P},

np{%,Pt,P) —=
det(X,P2,P1,P),noun(X,B3),
relative{X,P3,P2).

npl,P, P} —> name(X).

vpl{X,P) —> trans-verb
{%,¥,B1),0bject (¥, B1,P),
vpiX,P} —>
aux(be),complX,P1,P),
relative(X,P1,and{P1,P2)} —>
rel-macker(X),sentence(P2).
relative(X,P1,P),gap{G) —>
gaplG),rightex(X,P1,P).
relative(X,P,B} —=[].
rel-marker(Z),gapl(G},

trace(X,pP1,P) —>
rel-pronoun,gaplG).

cbiject{X,P, Q) —> nplX,B,Q).
object(X,P,P}) —> trace(X,P,P).

comp(X,P,P) —> adverb(X,P).

tracelX,P1,P} —>
[trace(X,P1,P)].

fightex[x,P1,and{P1,P2}} s

rel-marker(X),sentence(P2),
noun(X,man({£)) —> [man].
aux(be) —> [is].

adverb(X, here{X)) —> [here].

det{X,P1,P2,the(X,P1,P2,)) —>
[thel,

rel-pronoun —> [that].
name(3ill) —> [4i11].

trans-verb({X,¥,saw(X,¥,)) —>
[saw].

B COMCLUDING REMARKS

We have examined several formal
and natural language parsing
utilizations of GGs, and shown how
GGs can be expleited to arrive at
conclise formulations that (gap
determination excluded) are alseo
largely deterministic.

Ags pointed ocut in {(Dahl and
Abramson, 1984), this power can be
misused if not kept in mind. We there
showed a naive GG to accept
expressione balanced with respect to
parenthesis, which ha?pened to also
accept unbalanced strings, by way of
eating up the unbalanced parenthesis
inte the gaps. As has also been
pointed out, implementation details
are not definitely settled.

However, as the most inclusive
type of rewriting' logical grammar tg
date, GGs seem toc hold promise in
flexibility and expressive power,
Efficiency in gap determination.

moreover, does not seem crucial to
Us, since the most obwvious
applications for GGs concern natural
language processing, and will
therefore deal with relatively small
substrings anyway (the largest
pessible being the whole sentence or
paragraphl.

Some work on the complexity of
GGs could bé useful at this peint,
but this should probably best be
studied once implementation issues
have become better defined, and,
insofar as GGs are a computational
tool rather than a linguistically
exhaustive theory, mayvbe their
complexity should be studied in

e e LT PSS R —

' Recent work by Paul Sabatier
(Sabatier, 1984) presents a
non-rewriting type of logic grammar
— puzzle grammars —based on
tree-assembling. Here we only refer

te logic grammars based on rewriting
rules.

connection with the specific grammars
they will be used for in actual
systems — e.g., if uvsed for lexical
function grammars, complexity results
{e,g. Berwick 1982} might carry over.

&ll examples chosen here have
been kept simple in order to provide
clear illustrations for our
discussion, We hope, however, that
they have covered enough interesting
concepts that they might induce
further research on GGs within wider
scale applications,

ACRNOWLEDGEMENTS

1 am grateful to Brian Hewten,
Martti Penttonen and the referees for
useful comments on this article's
first draft. 1 also appreciate the
assistance of Wilsen Leung and Fred
Popowich with some of the testing.

This work was supported by the
National Science and Engineering
Research Council of Canada.

REFERENCES

Abramson, H. Definite Clause
Translation Grammars. Proc. IEEE
Logic Programming Symposium, Atlantic
City, Mew Jersey, 1984.

Berwick, R.C. Computaticnal
Complexity and Lexical— Functional
Grammars, American Journal of
go?pu?gaéonal Linguisties, Vol 8, No.

Colmerauver, A. Metamorphosis
Grammars. In:Bole, ed., Natural
Language communication with
computers. Springer-Verlag, 1978.

Dahl, V. Translating Spanish into
logic through logic. American Journal
of Computational Linguistics, Vol.
13, pp. 149-164, 1981,

Dahl, V., McCord, M. Treating
coordination in logic grammars.
American Journal of Computational
Linguistics, vol. 9, No. 2, pp.
69-591, 1983,

Dahl, V., Abramson, H, On gapping

gra?mars. Froc. Second International
onterence on Logic Programming, :
77-BB. Uppszla, Sweden, 1984. 8. PP

Kaplan, ®., Bresnan, .J.
Lexical-functional grammar: a formal
system for grammatical

677

representation. MIT Center for
Cognitive Science Occasional paper
Ne. 13, Cambridge, MA., 1981,

Pereira, F.C.H., Warren D.H.D.
Definite Clause Grammars for Language
Analysis, Artificial Intelligence,
Vel. 13, pp. 231-278, 1980.

Pereira, F.C.M,, Extrapositien
grammars. American Journal of
Computaticnal Linguistics 7, 4, pp.
243-256, 189B1.

Pullum, G.K. Free word order and
phrase structure rules, In: J.
Pustejovsky and P. Sells, eds., Proc.
of the Twelfth Annual Meeting of the
North Eastern Linguistic Secciety, pp.
209-220,, 1982,

Sabatier, P. Puzzle grammars. In:
Proc. First Internaticnal Workshop on
Matural Language and Logie

Programming, Rennes, France, 19B4.

