PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1984,
edited by ICOT. © 1COT, 1984

643

Knowledge Representation and INference Environment: KRINE,
- An Approach to Integration of Frame, Prolog and Graphics.
Yutaka Ogawa, Kenichi Shima, Toshiharu Sugawara and Shigern Takagi

Musashine Electrical Communication Laboratory
Nippon Telegraph and Telephone Public Corporation
3-9-11, Midori-cho, Musashino-shi, Tokyo, 180, Japan

ABSTRACT

It is well known that an expert system is
an intelligent computer program intended to
solve complex problems by means of inference
using domain specific knowledge extracted from
human experts in the domain. Especially, in
order to develop an expert system for
intelligent CAD, we will have much difficulty
in desecribing the design knowledge including
pattern matching procedures, in applying the
design knowledge by trial and errer or im
displaying design objects dynamically, if omly
convent ional object-oriented or f[rame-based
knowledge representation tools are uwsed. To
cope with these problems, the following
mechanieme were integrated with the
frame-based knowledge representation system;
{a} PROLOC programming functieme with direct
frame data unifier, (b) frame data recovery
for backtracking of inferemnce and (c) design
object display functions by interpreting frame
data directly. This paper describes the
design philosophy, mechanisms and examples of
integrated knowledge representation and
inference environment (KRINE).

l. INTRODUCTION

Recently, many research efforts have been
expended on software systems, that solve
complex problems by means of inferemce wuwsing
demain specific knowledge extracted from human
experts ({expert system). Tasks of expert
gystems range widely from diagnosis problems
to design problems. In particular, in case of
&n expert system te solve design problems,
hierarchical representation of design objects,
representation and application comtrol of
dasign knowledge, and dynamic display and
interactive editing of design cbjects
(man-machine interface) are deemed essential.

UNITS (Smith et al. 1980, Stefik 19749),
LOOPS (Bobrow et al. 198) and Smelltalk
{Goldberg et al. 1983} can offer functioms
related to hierarchieal representation of
design objects. However, because desige
knowledge requires explieit gearch and
manipulation of hierarchical structurce

patterns among design objects and because
simulations require dynamic display of the
design object”s structures, these conventiomal
knowledge representation teools are mot
sufficient .

To cope with these problems, the authors
have made a new knowledge representation and
inference environment (KRINE) that integrates
several knowledge representation paradigms.
This is because differemt paradigms are
appropriate for different purposes. FKRINE has
fundamental frame-based knowledge
representation wmechanisms (object-oriented,
procedure-oriented and mamipulatiem oriented)
and also integrates the following mechanisms;

(i) PROLOG programming mechanisms with
frame mification functions
{logic-oriented) and rule representation
mechanieme based on the PROLOG programming
mechenisme (rule-oriented),

{ii) Frame-based graphic enviromment, where
frame data are directly interpreted and
dynamically displayed.

At first, this paper shows background,
design issues and basic concepts of ERINE
knowledge representation paradigms as the
degign philosophy. Hext, it shows system
structure and KRINE mechanisms. They are
fundamental frame mechanisms, frame-based
logic programming mechaniem and frame based
graphic enviromment. Finally, ERINE knowledge
representation exsmples are mentioned.

2. DESIGH FHILOSOFHY
2.1 Background for ERINE

The problem solving tasks for expert
gystems can be classified into several
categories, such as diagonosis problem,
analyesis problem, plamming problem or design
problem (Stefik et al. 1982). The design
problem c¢an be defined as the creation of am
apparatus that consists of & lot of parts by
applying design operations te its abstract
ppecification. This problem is classified as
cne of the most difficelt probleme for expert
gystems.

644

To develop an expert system that solves
design problems (Design Expert system: DE)
(Takagi, Ogaws and Saite 1963, Takagi 1984),
the following knowledge representation and
inference mechanisms are required;
== Bepresentation of design objects

Degign objects must be represented
hierarchically according to parte-device
hierarchy. For exsmple, a8 computer
hardware can be defined hierarchically;
logical specifications, bloek diagrams,
gate circuits or cell structures.

== Bepresentation of design knowledge

Design operatioms, such as the
transformation or syathesis of design
objects, have to be represented as design
knowledge. These operatioms require
pattern matching procedures that search for
particular patterns in design objects.
== Backtracking control for applications of
design knowledge

Design operations are always applied
by trial and error. When one operation
fails, it is necessary to recover the
previous design object”s etate in order to
apply another operstiocn.

== DMisplay of design objects (man-machine
interface)

It is essential not only te display
current design objects hierarchically but
alse to re-display them as scon as they are
modified.

2.2 KRINE Design Issues

From the backgreound viewpoint as
mentioned in Section 2.1, the following ERINE
{(Enowledge Representation and INference
Enviromment } design issues were decided upon.
(1) Multiple knowledge representation
paradigms that are appropriste for their
application methods or objectives.

It is difficult to represent various
types of koowledge, such as design knowledge
or design objects themselves, by means of only
cene knowledge representation paradigm. This
requires the integration of knowledge
representation paradigms.

(2) Extendability wherein a user can easily
add wuser’s specific functioms to system
functions.

This requires self-editing functioms that
can easily add or modify system functicnms by
users.

{3) Pattern metching mechanism that searches
for specified patterns in the knowledge base
{4) Knowledge base recovery fumctioms

When one design operatien fails, it is
necassary to rvecover the previous design
object”s state in order teo apply the mext
operation.

(53) User interface that wisualize
objects

It is mecessary to display design objects
by means of direct interpretation of knowledge
structures and to edit them by a screen
editor. -

design

2.3 ERINE Knowledge Bepresentatiom Paradigma

To cope with the design issues desecribad
in Seetion 2.2, multiple knowledge
representation paradigms and mechanisme were
prepared based on frame data structures,
because knowledge representation systems based
on Frame theory (Smith et al. 1980, Stefik
1979} are suited for hierarchical knowledge.
This section describes the Dbasic idea
regarding our gix knowledge representation
paradigms. Mechanisms that actualize thess
paradigms are described in Section &.

OBJECT ORIENTED KNOWLEDGE REPRESENTATION

This representation consists of entities
called “object" which has procedures and data
aspects. Each procedure is activated by
sending a message to it with some token. The
procedure acts according to the token and
gEives a response. It is convenient to use
such upiform protocels. As a feature, all
objects are commected by an inheritamce
network; An object has the ssme property =s
the = object of its super concept. KRINE
identifies a frame with an object. A frame
has the walue called "ioheritance role" to
decide ite imheritance mode.

FROCEDURE ORIENTED FROWLEDGE REPRESENTATION

The knowledge of this representation
method composes instructions. In this
paradigms, data and procedures are separated
in contrast with the object criented knowledge
representation. In KRINE, LISF (MacLisp) is
used 25 a language for this paradigm.

MANIFULATION ORIENTED ENOWLEDGE REPRESENTATION
When the specified frame, slot or stored
value, which is termed “active data"™ , is
manipulated, the mechanism of this
representation sctivates some procedures that
have been specified in advance. This links
fmplicitly frame wmanipulations to other
procedures.
In FRINE, a user can create a special field ro
activate its slot or stored value (the special
frame-field to activete frame) and ecam store
procedures in the field. When the active data
are manipulated, a specified procedure is
invoked.

LOGIC QORIENTED ENOWLEDGE REPRESENTATION

This methed represents knowledge with the
first order logic (Horm clause) like PROLOG,
It consists of the declarative clauses ,
axioms and goal clauses. If a goal clause is
given, the mechanism of this paradigm searches
for declarative clauses and axioms to prove
it. This paradigm is appropriate for
representing the knowledge that has logical
features. KRIME has a prolog-like inference
mechaniem which is called "PRIME"™, and which
can interpret frames as clauses and uwnify
them.

EULE QRIENTED KMOWLEDGE REPRESENTATION

This represents knowledge with a pair of
premise and action (If ... Then ~). KRINE
hss a rule interpreter end can set some rules
im a frame. The rules are activated by
sending a message to the frame.

FEAME~BASED GRAFHIC ENVIRONMEHT

Since most design objects have modular
and hierarchiecal pstructures, they are easily
represgnted in FRINE frame data structures.
Moreover, it is essential to display and edit
current design objects. Therefore, EKRINE
mansges figures of desigr objects by
corresponding them to frame data structures.
As @ result, KRINE ecan uniformly wmanage
figure’s attributes, imvocation of figere
manipulation functions and hierarchical
relations between figures, based on frame data
structures, With this paradigm, & user can
easily displey figures of design objects. For
example, a user can display simulation results
dynamically, merely by changing the frame's
values.

3. BYSTEM ORGANIZATION

KRINE offers six knowledge representation
paradigms described in Section 2.3 om LISP
processing system. Figure 1 shows ERINE
Gy¥stem organization. All paradigms are based
on frame data structures. Each knowledge is
based om one paradigm and it can communicate
with or refer to the kmowledge based on the
other paradigms by means of a message passing
facility. 5o, users can easily develop expert
gystems that combime multiple knowledge
representation paradigms, because this miferm
protocol allews users not to mind what kind of
paradigms are used.

I Dasign Expert Syuten H

: Bystem Funetions U
1 Frame-hasad Frame-hased :
N Logic Graphie "
E Programming | Environment [— .
Mechanism Graphic
Display /
th1ﬁm¢nﬂ@i&amﬁ Editer | |Terminal

LI&PF

Becondary
Btorage

Figure 1 System Organization

645

&, FRINE HMECHANISMS

This section describes the basie data
structure, frame and mechanisms that offer six
konowledge representation paradigms.

4.1 Frame Structure

Enowledge base is a set of £rames that
have hierarchical structures. Frames consist
of the following entities (See Figure 2);

{1} Hame : Name of the frame.
(2} Frame-fields : A frame-field is an area
where an optional wvalue is stored. This
value is called "frame-field walee (with
respegct to the framel}". One ussge of this
value is Manipulation Oriented Mechanism.
(3) Group : Group is an area to store
special value that classifies frames to focus
attention on them in the krowledge base.
[4) Slets A slot consists of the following
subentities;
(4.1) Hame : Name of the slot
(4.2) Value : Stored slet value
(4.3) Datatype : This restricts the stored
slot wvalues: Only adaptable wvalues are
permitted to be stored. Datatype can be
chosen among ATOM, FRAME, INTEGER,
NUMBER, LISP, PROLOG, RULE, S-EXPR, TEXT,
J-TEXT, TABLE and LIST (svstem”s imitial
settingl.
(4.4) Fields : A field comsists of a field
nzme and a stored value for the field.
This is called "Field Value". The first
field im & slot has the walue termed
"Inheritance Bole" that decides the slot
inheritance mode by progeny. See (Smith et
al, 198, Goldberg et al. 198}) and Table
1l about the inheritamce role. Some special
fields are uwsed for Manipulation Oriented
Hechanism.)

= frame>
| =alot I> <datatyps 1> <wviloe 1>
* field 1> <fleld value 1>
* <ficld 2> <field values 2>
<alatl 2> <datatype Z> <walup 2>

Figore 2 Frame Btructure

646

Table 1 Inheritpnce Role

Blot nkme, datatype and S
role inberiiance Value inheritance

All informution s The lot value iz unigos at each
U linherited, level in the blerarehy.

de. Slot in the frame and its progeny
8 hawe the same valus.

do. Slpt in the frame can have the ooly
B wnlue that the seme alot in ibs parent

Frame have,

I Mo inheritance No inheritance

4.2 Fundamental Frame Mechaniss
4.2.1 Bagic Frame Handling

For the basic frame handling, EKRINE s
system functions and command editor, that is
linked to EMACS, <car be used. These
facilities are almost the same as UNITS (Smith
et al. 198)).

%4.2.2 Bpecial Frame Mechanisms

(1} Undo Mechaniem for Frames

It is often necessary to make Erial
tentatively to find the best solution for the
given problem. Some inference algorithms
selact one wmethod among candidates which may
lead to the best answer and make trial in turn
until the best methed is found. However, whem
one of thes contains some changee inm frames,
sloets or the stored wvalues, the initial
conditions for each trial are different £rom
the previous conditioms. Therefore, frame
undo mechaniem wae attached te ERINE in order
to do with this trouble.

FRINE has a system functiom '"UNDO" for
the undo mechanism. For exsmple,
(unde <crial 1%)
{unde <trial 2>
{undo <trial 2-1>)
(undo <«rial 2-23)}
traile {<trial 1> and <trial 2>} are made.
Within the secomd trial, <trail 2-1> and
<trial 2-2> are tried tentatively. Bo, it is
poseible to undo only a part of each
procedure. This mechaniem is wused to
implement the backtracking function in PRIME
interpreter.

{2} Bystem Frames
One of KRINE a design issues is to be
able to add new facilities easily. To do
this, KRINE prepares system £rames which
control moat of the KRINE s facilities. This
makes it possible to change the functiems by
editing the framea. The following entities
are written in system frames.
(A) Editor commands and their Functions.
(B} All kinds of datatypes
(C) The manner for making
received messages

Tesponse to

(D) Bagic handling of wvirtual
mechanism

{E) Definition of fields which is related to
Manipulation Oriented mechanism.

{F) All kinds of inheritance roles and their
inheritance manner

{G) Definition of focus of attention with
group

WEROTY

4.} Frame Based Logic Frogramming Mechanisms

This section describes frame-based legic
programming mechanisms, such as PROLOG
programming mechanism with frame unifier PRIME
(PRolog wIth freME unifier) snd rule
representation mechanisme.

4,3.]1 Basie Structure

PEIME syntax is described in the
following BHF (Backus normal form) notatiom;
<glauser::= {<plus literal>}{<minus literal>}:

Each clause can have at most one plus

literal.

<plus literal®::= + (<predicater {<term>})
This is used to represent the head of a
clause (Prolog statement).

‘minus literal>::= - {(‘predicate> {<term>})}
Series of minue 1literals are wused to
represent the body of a clause (Prolog
statement }.

<term>::= <yariable>| <constant>| <list>|

(«funetion> { <term>'})
<wariabler::= * <gymbol>

PRIME expands descriptions of FRIME s
minus literal ag the following three
forms(each form is a Llist);

(1} Prolog predicate

A1l the pre-defined prolog predicates can
be invoked by PRIME. Calling sequence for a
prolog predicate is as follows;

{<predicate nsme> { <parameter> })

(2} Lisp funection
All the maclisp functioms ecan be imvoked
by PRIME in the following form. ’

({call} <function name> {<parameter>})

The predicate mame "CALL"™ is unnecessary
unless the name conflict occurs. All the
paraseters must be bounded when the Llisp
function is invoked.

(3) Frame access

All the frames can be accessed by PRIME.
The freme access is represented as the triple
form

(<frame name> <slot name> <slot value>).
The above form is interpreted ae the following

term automatically by the system;
{feall <“frame name*<slot namer<aslot wvalua>).

The clause can be stered not only in the
certain wmemory area controlled by PRIME
{called "clause definition area"),but alse 1n
a sglot.in a frame. This is shown in Fig. 3.
{*X,*¥,*Z and *W mean variables.) When the
clause is etored in & frame, the frame with
that clsuse name is accessed dynamically at
runtime. When the same predicate name exists
in both the clause definition area and a
frame, the former is used,

CODSIN
Prototype ia FLFPROC
Slok Top Role Datatypa Data
COUSING STORR {1y <PROLODG»
+[COUSIN "X Y)-(FARENT *X "I)
={FARENT *I *§)
-{BROTHER ¥ "W}:
BROTHER FTOpe (I) <PROLOGH>

+[BEOTHER %X #%)[%% FATHER *I)
-(8Y FATHER *Z)
~(EVAL (EQ "X *f) NIL):

Figura 3. Clause Definition in frame.

4,3.2 Unification Mechanism

invocations of a
lisp procedure and a proleg
same form. (See Sectiom

PRIME can represent
frame access, a
procedure as the

£.2.1.) The invocation of a rule is performed
by the message passing facility. These
invoeations are accomplished under FPRIME s

unification mechanism.

Each literal in clauses is processed in
the following pricrity order;
(priecity 1) Prolog predicate
(priority 2} Lisp function
(priority 3) Frame access

As usuwal, the literal can be processed in
the above priority except that predicate names
are “gall" or “feall"™. In the case of the
frame aceess, triple forms (frame-slot-value)
for unification candidates are produced
automatically. If the value is not defined,
it is treated as a variable. When the walue
is bounded, the frame access is executed in
accordance with the slot datatype and the
inheritance role.

To avoid fruitless access to knowledge
base, freme grouping can be used. This is
accomplish by dividing the knowledge base into
several groups. As a result, gearching space
becomes limited and searching time ig reduced.

4,3.3, Backtracking Mechanism

Each clause is executed according to

input resolution. When an umification fails,
FRIME releases the binding informatiom,
invokes the backtracking mechanism and

searches for the next clause automatically.

547

When the lisp function result wvalue is
"MIL", the backtracking mechanism is invoked
and PRIME begins processing om 2 2 new
environment. Moreover, if the lisp functienm
updates the frame information or structure and
backtracking occurs, PRIME recovers the frame
information up to the previous ptate
automatically, wusing the uwndo mechanism (See
Section 4£.2.2 (2}). This unde mechenism is
based on the variable subgtitution technique.
FRIME saves only the minimal data needed to
restore the old frame data.

4,3.4 Rule Mechanism

In the rule representation, a user can
use the following functiens;
(1) Heference to frame data structures.
(2) Invocation of lisp functioms.
(3) Proof of proleg predicates.

Bule syntax is shown in the following BHRF
notation;
<RULE> ::= <PREMISE PART> ==»> <ACTION PART>
<PREMISE PART> ::= {<AULE TERM>}
<ACTION PART> ::;= {<RULE TERM:}
<“RIFLE TERM> 1= { <PREDICATENAME>
{<TERM ELEMENT>}) |
{ <FUNCTIOMNAME >
{<TERM ELEMENT>} } |
{ <TERM ELEMENT>
{<TERM ELEMENT>} }
<TERM ELEMENT> ::= <VARIABLE> | <CONSTANT>

<VARIABLE> 3 1= WCONSTANT>
<CONSTANT> t1= gerings of alphanumeric
character

The premise part is used wmainly in
pattern matching for design objects. The
action part is used for operations
application. These ecan realize a production
system (PS) based on freme data stroctures.
In this PS5, all frames are considered as
working memory and rules are applied to them.
A user can make hierarchical structures of
rule sets. TFigure &4 shows a rule eXample.

SIMPLIFY-RULE
Frototype is PRODOCTION
eireult graph reduction rule.
glat Top
AOLE: PRODUCTION u}
(8.1 TO ®ROTI)
{®ROT1 OUTPOT *L2)
(*L2 TO ®NOIE)
{*NOT2 OUTPOT *L3}
=}
(DELETE-FRAHE #HOT1)
{DELETE-FRAME *L2)
(DELETE=FRAME "BOT2)
(FUTVALUE ®.1 TO *L3)
(FUTVALUE "3 FROM ®*L1)

Bole Datatype Data
CROLE>

Figure 4. Circuit Simplify Rule Exanple

4.4 Frame-based Graphic Environment

Frame-based graphic envirooment (GE)
visualizes design objects by direct frame data
structures interpreting. KRINE graphic
primitives are based on ACH CORE standards
{Computer Graphics 1979}.

4.4.1 Frame-based Figure Management

FRINE manages a segment that is a unit
for a CORE system”s output primitive as ome
frame. ERINE stores all sttributes of a
segment, such as visibility, detectability or
highlighting attributes. Alsoc, ERINE manages
modeling transformation parameters for each
segment. These attributes or parsmeters are
stored as siot values. When a user modifies
an attribute by editing the wvalue for the
related slot, the ERINE manipulation=oriented
mechanism austematically changes the figure on
the graphie display at once.

G, 2 Figure Manipulation by Ueing
Object-oriented Facility

Figure manipulation functions are invoked
uniformly by FRINE message passing facility,
These funections cam be clasaified into the
following two categories;

(1) Meta level figure mamagement functions

These management functions are figure
creation and deletion functioms. A user can
invoke these functions by sending messages to
the system frame {SHAPE SEGMENT).

(2) Object level figure manipulation funections
Object level functions can be invoked by
gending a message to the frame related to a
figure itself.
= Figure transformatiom
A user cen transfer or arrange a figure
by the following methods;
{i} Modeling transformation
(rotstion, parallel
scale smounts)
(i1} Arvangement of a
arbitrary coordinate
(iii} Rotation of a figure through an
arbitrary amount around an arbitrary axis
- Setting up and modifying figere attributes
This can be done by editing the related
slot values.

parameters
transformation and

figure on an

4.4.3 Display of Design Objects Hierarchical
Relations

The hierarchical relations for design
objects im HRINE are classified inte the
following two categories;
1) 15-A relation
relation)

Thie relatiom ig used where many
instances are creaced from several prototypes.

{ptutatypa—inatan:e

For example, in digital circuits, definitions
ef eirewit elements are prototypes (such as
AND, WOT gate and 8o on) and individual
elements that organize the eiréuit are
ingtances of prototypes.
= Prototype figure definition
A user can create a prototype figure
by sending a message to the manager frame,
This message contains the graphie
information about the figure.
= Instance figure creatiom
A user can create an instance figure
by sending & message ko its prototype
figure frame.
{2) PART-OF relatiom
Individual parts are designed
independently and have their own coordinates.
Therefore, in order to make up a master
apparatus, it ie necessary to specify relative
positions on the apparetus”s coordinate
(master coordimate) as the PART-OF relatiom.
ERINE graphic enviromment offers mechanisms to
set up this relation easily by the following
methods;
= Belative rotation, parallel transformation
and scale amounts through X,Y and Z axis of

magter coordinztes (relative modeling
transformation parameters)
= An grbitrary coordinate om the master

coordinate
= A rotaticn amount around an arbitrary axis
on a master coordinate

When a vser changes the position of a
master apparatus by figure tramsformation
functions deseribed in Section 4.3.2, all
positions of figores on the master apparztus
ate automatically changed, where relative
positions between the master apparatus apd its
slave figures are left unchanged.

3. EXAMFLE

This section describes design object and
design lmowledge examples of Design Expert
System [Takapi, Opawa and Saito 1983, Takapi
1984) for computer hardware logic design,
based on KRINE.

3.1 Design Object Examples

Figure 5 ghows a functiom block diagram
as an exsmple of dJdesign objects based on
ERINE, Figure 6 shows a Eframe hierarchy
example of Figure 3. In figure 6, common data
path component concepts, such as register,
ALU, multiplexor, or bug, are defined as
prototypes. Every concrete elements, such as
GED, ALUl, MPX-l, or BUSA, are defined as
instances, Instance frame examples (ALUL and
L1) are shown im Figure 7. The ALUL frame has
input foutput terminzls, its logical function
and its graphical information. The shape
information of ALUl is inherited from its
prototype BINARY-ALU (IS-A relation). The
graphical information of ALUL, such as=s
DISPLACEMENT, BOTATION, VISIBILITY,

HIGHLEGHTING and TDETECTABILITY, «can be
upiquely defined. When this pgraphical
information is changed by system functions or
the frame editor, the shape displayed is
automatically changed based on the data
manipulation mechanism (the invoked functiom
is set on "updated” field).

5.2 Pesign Knowledge Exsmples

Figure 5 shows design knowledge examples.
Each design knowledge is represented in PROLOG
and stored in a slot of a frame. This design
knowledge is wused to verify the consistency
batween a functional specification and its
data path and, if inconsistency occurs, te
analyze the cause of incomsistency and revise
the data path. G&ince there are several ways
to revise the data path, it might occur to
hayve to take another revision method after a
revieion method is tried. This trial and
error can be handled by KEINE UNDO mechanism.

6. CONCLUSION

This paper describes the design
philosophy, system, structure, mechanisms, and
examples of Knowledge Representatiom and
INference Enviromment (ERINE). EKRINE features
are as followe;
= Fundamentzal frame mechanisms

KRINE offers hierarchical
repregentation for desipn objects,
procedural knowledge representation im LISP
and invocation of LISP function, FROLOG
program a&nd ROLE followed by frame
manipulations.

= Frame=based logic programming mechanisms

ERINE offers a PHOLOG programming
mechanism that can directly unify frame
data in order to describe pattern matching
procedures for design lknowledge easily.
KRINE also offers & freme data backeracking
mechanism in order to apply design
knowledge easily by trial and error.

- Frame-based graphic environment

FRINE manages a sepment as a frame to
vigualize design objects by directly
interprating frame data structures. ERINE
also maintains hierarchical relations for
design objects to allow arranging or
editing them easily.

FRINE i now used to represent
fundamental Design Expert system’ s knowledge.
This runs under the DEC-20/MACLISP, the
VAL [HIL and the Symbolics /ZETALISP
environment. The program size for a current
KRINE wversion is 20K lines (fundamental frame
system: 10K, frame-based logic programming
mechanisms (PRIME): &, graphic environment :
6 lines). The authers have a plan to convert
FRINE to an ELIS/TAD lisp machine developed by
the NTT laboratory and to make a frame-machine
a8 a knowledge base machine.

49

ACKHOWLEDGMENT

The authors are grateful to K.Yamashita
for |his kind suggestion, and te project
members for their helpful digcusgion.

REFERENCES

D.G.Bobrow and M.Stefik,"The LOOPE Manual,"
KEROX PARC Enowledge-Based VLSL Design Group
Memo, KB-VLSI-81-13,1981.

"Status Report of the Graphics Standards
Planning Committee," Computer Graphics 13 (3),
August 1979,

A.Goldberg and D.Robeon, “5malltalk-80:The
Language and its Implementation,"
Addison-Wesley, 198.

M.Hinsky,"A Framework for Representing
Enowledge," in Psychology of Computer Visiom,
MeGraw-Hill, 1975.

E.G.5mith and P.Friedland,"UWIT package user’s
guide,” Stanford Huelistic Programming Project
Memo, Memo HPP-80-28,1980.

M.Stefik, “An Examination of a Frame-based

Bepresentation System," LJCAIL, 1979, opp
“5"52!
M.5cefik, J.Aikins, R.Balzer, J.Benoit,

L.Birnbatm, F.Hayes-Roth and E.BSacerdoti,"The
Organization of Expert Systems, A& Tutorial,"
Artificial Intelligence,l8 (1952},pp 135-173.

S.Takagi,"Rule Based Synthesis, Verificationm
and Compensation of Data Path" Proec. of ICCD

§. Takagi, Y.Ogawa and M.Saito,"Exsminstion
fEor Design Expert System: DE-0 (in
Japanege)," The 26th Conventionm (of IPSJ),
l15a8s.

650

Figure 5. Design Object Example

/%% DESTON (BJECT FRAME HIERARCHY wey

HARDWARE
" SEHPLE-HARDWARE®
CONTROL=PART
®SAMPLE-CONTROL-PART® AL
DATA-FART Protatype iz BINARY-ALU
RS AMPLE-DATA=FART® Slet Tap Role Datatype Data
INPUT HAME: HAREWARE (o) CATOM> ALIN
*MEHORY-READ-DATA® INPUTT: BINARY-ALU (U) CATOM> IH1
CUTRUT INFUT2: BINARY-ALU (U) CATOM> me
SMEMORY-ADDRESS® OUTEUT: BINARY-ALU (U} <ATOM> T
BINARY=-ALD FUNCTION: BINARY=ALD (U} <PROLOG>
FRLUTE +(FUNCTION C(ALUT CUT) <- CALUT IN1) & (ALY IN2)) (ALUY AND)):
OHARY=ALY +{FURCYION ((ALU1 0UT) <- (ALH1 INT) OR {ALU1 IN2)}) (ALUY OR}):
L2 +(FUNCTION {(ALDT QUT} <= (ALUY IM1} + (ALUT IN2}) (ALO1 ADD):
LITELS +{ FUNCTION {(ALU1T QOT) <= (ALDY IN2}} (ALY THROOGGH)):
REQISTER SEGMEHT_NAME "Tops (1} <INTEGER> 10001
hGR)* DISPLACEMENT: ®TOP® (1) <5-EXPR> (2000.0 3000.0)
AR PUPDATED TRANSYE
goe ROTATION: #TOPA (I} <2-EXPR> (0.0 0.0)
‘o SIPDATED TRARSE
HULTIPLEXOR VISIBILITY: TR (1) CATOMY O
SHPE-14 HUFDATED GEATTR
Lol L] HIGHLIGHTING: ®TOR® (1) CATOMS OFF
. e SHPDATED G4ATTR
BUS DETECTABILITY: ST0P® (I) SATOHY O
it U SUFDATED GRATTR
Inm! E
Iﬁmrl
TRI-STATE-GATE L1
518 Frototype is LINE
G-ae Elst Top Hole Datatype Data
.5 HAME : HAREWARE }] CATOH> L
LINE FROM: LIKE (@) £3=-EXPR> {GRO OUT}
L TO: LINE (m CS-EXFR> {HPX=1 1)
"Lae ROUTE: LINE {u} <5-EXPR>
P {(POLYLINE ((-10000.0 3500.0)
(=10000,0 ¥500.003))
F#B DISPLAY CONTROLL FRAME HIERARCHY *8/ SEGHENT WKAME L {1) <IHTEGERS 10002
SMAPE_ROOT et -
SHAPE_FROTO
SHAPE_LOCATE Figure 7. Design Object Frame Exanple
SHAFE_SECHENT
SHAPE_IHTERACTION
SHAFE_CLA=S
SHAPE_VIEW

Filgara 6. Frame Hierarchy Exampie

651

/*% gosign method frame *%7
DATA-PATH=-VERIFIER
Prototype i PLFROC
Slot Top Hole Datatype Data
VERIFIER: P # (1) <PROLOG>
+(VERTFIER (®*D <= #31 ®F *52))
-(0R ({VERIFE ("D (= ®51 "F #53) ¥RESOLT)
{ INFORM-EESULT ®RESULT))

{ (WHI-FAILEDT STYFE (®D <- ®51 W #51) ®PAILURE-INF)
{EEVISE=DATA-PATH *TYPE (*D <- %51 #F #52} WFAILURE-INF)
[ASE-IF=ACCEFTABLE))

{ {HOT-VERIFIED (%D <~ ¥51 WF 552110} :

VERIFY
Prototype is FLPROD
Slot Tep Ecle Datatype Data
VERIFI: ¥TOF ® (1) < FROL OG>

+[VERIFY (8D <- 951 *F #52) (#5UB-DATA-PATH *PATH1 “PATHZ *PATHI)})
-(FIND-FUMCTION {%2 <= WX #F #Y) SSUB-DATA-PATH)
={FIND-FATH %31 "X *PATH1)}
~(FIND-PATH #52 %Y *FATHZ)
=(PIND-PATH "% "D #PATHI) :
FIND=-FUNCTION: ®T0F ® {1} <PROLOG>
+({FIND-FUNCTION (%I <- %X *F #Y) ®50B-DATA=FATH)
~(FUHCTICH (92 <- %% F #Y) HSIB-DATA=PATH} :
+{FIND=FUHCTION ("2 <- *X - ¥Y) { #SUB-DATA=-FATHT *PATH SSOR-DATA-PATH2))
={FIND-FUNCTION (*a <= ° *¥) S5(B=DATA=FATH)
~(FIND-FUNCTION (%2 <= ¥ » %8 + 1) ASBE=DATA=-FATHZ)
~[FIND-PATH #a "8 SPATH} :
FIND-FATH: 0P ® (13 {FROLOG>
+[FIND-PATH "FROM *T0 %PATH)-(A-FATH *FROM ST SPATH):
+(FIND=-PATH *FROM #TO (*PATHO . *PATH1))
={A=PATH *FROH *X *PATHO)
~[A=FATR ¥ #70 "PATH1) :
A=FATH: STOF ® {1} <PROLOG>
+[k=FATH "FROM 70 “LINE)-{¥LINE TO #70)-("LINE FROM ¥FROM):
o[{=PATH %FR0M "0 PATH)-{FIND-FUKCTICON (910 <- ®FROM} *PATH):

%

FAILURE=AMALYSIS
Prototype ia PLPROC
3lot Top Role Datatypa Daka
WHY=FAILEDT: *TOF ® {1} <PROLOG>

+WHY-FAILED? LACK-OF=-FURCTION ("D <= #35] *F 933} HODULE)
={TYFE HLU *MODULE}
[DO-HOT-HAVE-FUNCTION WMODULE *F)
~{FUNCTION (%7 %g #% 7} (¥40DQLE ®CTL]))
~-{FIND-PATE "I #D #PATH1)
~(FIND-PATH %31 #3% ®PATH2)
=(FIND=BATH %32 *Y *PATHI):
+[WHE=-FAILEDF LACK-OF=PATH=-TO-DESTIRATION (*D <= *31 *F 552} (*Z D))
-({VERIFY (#% ¢- W51 #F ®52) ®PATHO)
-{MOT (FIND-PATH % %D ®pATH1)):

REVISE-DATA=FPATH

Prototype im FLFROC
slot Top Fole Tatatype Data
BEVISE: ¥TOp ® (L} CPROLOG>

+{ REVISE-DATA-PATH ¥IYPE (%D <- #51 ip #52) SFATLURE-INF)
~{CCALL ("TYPE (D <- *31 *F #52) WFAILURE-INF)) :
LACK-OP-PATH-TO=DESTINATION: ®TOF * (I} <PROLOGH
+{ LACR-0F=PATH-TO-DESTINATION (WD <- 931 4F #52) (9% #D))
~[CONNECTED-TO-BOS ®Z PBUS)
= [RO=COMNECTION *D)
={CONNECT %805 *0):
COMHECT: QR @ (L) <FROLOG>
+{CONNECT SFROM" #T0)
~{MAKE=IHSTAHCE LINE ®LINE-HAME}
~(PUTVALOE *LINE=HAME FROM ®FROM)
={FITVALUE SLINE-HEME TO *T0) :

@ ow oW

Flgure B. Design Mathod Frase Example

