PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1934,
edited by ICOT. & ICOT, 1984

623

AN OBJECT-ORIENTED APPROACH TO KNOWLEDGE SYSTEMS

Hario Tokoero and Fufoka fshikowe

Department of Electrical Engineering
Keio University
3-14-1 Hiyoshi, Yokoharna 223 JAPAN

ABSTRACT

A method for an object oriented modeling of
knowledge systems called DKOM (Distributed
Knowledge Object Modeling) is proposed. In this
modeling method, a knowledge system consists of
cooperakive knowledge objects, where each
knowledge object consist: of a behavior part, a
knowledge part, and a monitor part. An object
oriented language called ORIENTS4/K has been
designed based on the DKOM. The behavior part of
an object conlains methods like those in Smalitallg
the knewledge part contalns rules and facts like
those in Prolog: and the monitor part monitors and
controls the object. The relation belween class
and object, the relation between the behavior part
and knowledge part, inference from lmowledge,
addition and deletion of knowledge, addition and
deletion of methods, and access control of objects
are described. An experl system is built using
ORIENTE4,/K and the performance of CRIENTS4/K
is compared with some olber programming
languages/systems.

1. INTRODUCTION

Various knowledge-based syslems have been
built to understand intelleetual processes in the
flatds of expert aystems, robotics, natural
language understanding, learning systems and so
forth [Barr and Feigenbaum 1981]. In the deveiop-
ment of most of these systems, first tailoced
software tools had to be preduced to build indivi-
dual objective systems [Hayes-Roth et al. 1883,
and most of the systems were programmed in Lisp,
which is considered to be a low level language for

knowledge systemm implementation. Thus,
demands for generalized programming
languages/systems have arisen,

There have been several Programuming

languages/systems proposed to support the build-
ing of knowledge systems. For example, KRL
[Bobrow and Winograd 1976] and FEL [Goldstein
and Roberts 1977] are based on frames and are
implemented on Lisp. 0PS-5 [Forgy 1981] is based
on the production system and is implemented on
Lisp. PIE [Goldstein and Bobrow 1881] is based on

frames and is implemented cn Smalltalk. LOOPS
[Bobrow 1982] eombined an object-
oriented paradigm. and a production-based ruole-
criented paradigm on Lisp. LOOKS [Mizoguchi et
al. 1984] and Mandala [Furukawa et al. 1984) have
adopled logic programming paradigm approaches.

In order to build large knowledge systems, we
need & programming languege/system with (i) a
wider application area, I:ii(} a higher deseriptivity
and maintainability, and (iii) a higher execution
efficiency. With this in mind, we propose a new
modeling method, called Distributed Knowledge
Object. Modeling {DKOM), for representing
knowledge systems. In DKOM, a knowledge system
is composed of distributed Knowledge Objects
(KO), each of which consists of a behavior part, a
knowledge-base part, and a menitor part.
Knowledge objects run in parallel, and communi-
catle with each other by message passing. A
knowledge object makes deeisions according to its
knowledge in respending to a request message. It
may send messages to other objecls to ask Lheir
belp in making a decisien. It can acquire
lmowledge using inquiry messages and can gen-
eralize its knowledge. The monitor part monitors
and controls all the activities of the object.

An object oriented language called
ORIENTB4,/K has been designed based on the
DKOM. This language provides the capability of
describing the bebesvior of an object as the
Zrnalltalk-80 [Goldberg and Robson 1983)] system.
It provides the capability of describing rules and
facts as Prolog. A prototype of ORIENT84,/K has
been implemented on Franz Lisp. The final version
will be implemented on an object oriented archi-
tecture which is being built [Ishikawa and Tokoro
1884], [t will provide capabilities for the execution
of a knowledge system in a distriboted multi-
processor environment,

In the next section, we discuss issues in gen-
eralized programming languages/systems for
building knowladge systems and propose the Dis-
tributed Knowledge Object Modeling {DKOM). In
seclion three, we describe an object oriented
language ORIENTB4/K with examples. In section
four, we describe & knowledge system
programmed in ORIENTB4,/K and the descriptive

624

capability of ORIENT84/K iz discussed in com-
parison wilh other programuning
languages,/systems. In the last section, we con-
clude with remarks on the DKOM and ORIENTS4/K
and future plans.

2. ISTRIBUTED KNOWLEDGE DBIECT MODEL

2.1. Principal Objective

Let us first consider the intellectual behavior
of a human being. We have acceptors such as eyes
and ears Lo recaive data, memory to record infor-
mation, and actuators such a= hands and voecal
chords to output data. The process of oar
behavicr could be simplified and described as fol-
lows:

{1} On accepting data through acceptors, we
interpret the data in order to recognize them
as informalion.

{2) We then infer from knowledge in our memory
te make a decision. We may initiate actions
through actuators to obtain forther
knowledge for meking decisions. Or we may
hypothesize and prove, and we generalize
rules in making decisions.

{3) By using the decision made in (2), we initiate
final actions that are usually irreversible.

(4) We monitor the effect of the actions made in
(3) as feed-back for future decision malking.
We also monitor the process of inference in
{2} to improve our decision making process.

There have been. various discussions about
knowledge systems and their description
languages,/systems, but mainly from the viewpoint
of process {2). Since process (2) iz the process of
simulating the real world in a knowledge system,
modeling from the viewpoint of process (2) is
appropriate for most lknowledge sysiems, espe-
cially for expert systems. In olher areas of
knowledge systems such as robotics, knowledge
systems include all the above processes.

Our principal objective is to devise a new
moedeling scheme and programming
language/systermn based on the modeling scheme
for deseribing large knowledge systems: the pro-
gramming language,/system can simulate all of the
four processes listed above. In the following sub-
sectlons, we discuss some important Issues in
achieving our principal cbhjective.

2.2, Bxecution Mechanisms

Representing a program in either a
declarative manner or a procedural manner is an
old yet impertant issue {Winograd 1975]. Writing a
program in a declarative manner is uwsoally very
easy for knowtedge systems in a well-defined area.
On the other hand, L usually gives us less
efficlency than a procedural representation. In
addition, when we would like to conlrol the execu-
tion of programs, programs become very cormpli-

cated,

Hepresenting a program in a procedural
manner is suitable for describing behavior of an
ohject. A procedural language can easily manipu-
late arbitrary data sbtructures, However, it is not
always appropriate to deseribe rules and facts,
Thersfore, we would like to utilize both representa-
tiens and their execution mechanisms in our pro-
gramming language//system.

2.3. Modularization Mechanisms

In representing knowledge systems, there are
bwo levels of medularization:

(1} the rule/fact level modularization in which
modular programming is achieved at the
granuiarity of a rule or a fact, and

{2) the object level modularization in
modular programming is achieved at
granularity of an objeet,

The rule/fact level modularization premises
that a knowledge system consists of a collection of
knowledge [ragments. Production system-based
languages such as OP3-5 and predicate logic-based
languages such as Prelog are examples of this
modularization. Since each knowledge fragment
can be treated independently from others, it is
easy to eppend knowledge to and delete knowledge
from a knowledge systerm. On the other hand, it is
difficult to find relations among rules and facts. [n
addition, for a large knowledge =system, conditions
for each rule or fact tends Lo be complex.

The object level modularization premises that
knowledge relating teo an object should be con-
tained in the object and that a knowledge system
consists of a collection of such objects. Such
medularization is favorable [rom bhe viewpoint of
execution efficiency. However, it is sometimes
difficult to represent general rules or interrela-
tions ameng ehjeclts.

We would like to utilize both of the modulari-
zation. That is to say, we would like to describe a
knowledge system as a collection of objects, where
knowledge in gach object is represented at the
level of a rule or a fact.

which
the

2.4 Predicate Logic Approach and Object
Oriented Approach

Proleg can be considered te be a predicate
logic-based declarative language (rather than pro-
cedural languags) with the rule/fact level modu-
larization. The Smalltalk-80 system can be con-
gidered as a procedural language (rather than
declarative language) with the object level modu-
larization.

Although these languages appear in gquite
different manners, there is a duality relation
between them. In predicate logie, predicate "m is
Qton" is described as

Q. n}.
Thus, predicate @ knows and holds all the pairs of

¥ and Y which make this predicate true. In object
crientation, object m provides the following
methed of implementing an eguivalent effect:

Qx| |
¥ isNil UTrue:] Tn]
T Xx==n
The unification function of Prolog can also be
described in the object oriented manner by using
broadoast messages. For example, a Prolog clause

C{X Y) - P(X. Z). Q(Z. Y).

for a given x for X ean be described in an object-
criented manner as follows:

C: ¥ | z answer |
answer + OrderedCollection new,
z + nil
z + self P: 2.
(z isEmpty) whileFalse:[
{{{z removeLast} @ y) i=Nil}
ifFalee:[answer addlast: y]

T answer,

In predicate logic, it is natural be represanl
relalions among concepts (objects) and it is power-
ful for deriving new relations from a given relation
among concepts. IL is, howsver, impossible to
represent history sensitive characteristics, or
states, of coneeptz. Thus, we need lists of charac-
ters to be passed between predicates in Prolog. In
this sense, Prolog is used as a list processing
language whose syntax is predicate logic oriented.

In object orientation, the abstraction of con-
cepts is easily achieved by using class definitions
and the instantiation of the object. Hierarchical

Enowledge Object

monitor
part

knowledge-base
part

Fig. 1 The components of a Knowledge Object

625

abstraction is alse achieved by using the notion of
class inheritance. Thus, object crientation is suit-
gble for representing the characteristics or pro-
perties of objects, including the time-varying
states of objects. In object orientation, however, it
is really difficult to represent relations among
ocbjects as we saw in the above example.

2.5. Proposal of Distributed Knowledpe Object
Modeling

In concluding the above discussions, we pro-
pose a method ol Distributed Knowiedge Object
Modeling {DKOM) for knowledge systems. In order
to represent a large knowledge system in a simple
and natural way, we consider that it should be
compesed of small knowledge systems, each of
which can simulates all the processes deseribed in
subsection 2.1. Thus, in DKOM, a knowledge sys-
tem consists of distributed Knowledge Objects
(K0's). A knowledge object consists of
behawvior part, knowledge-base part, and
menitor part {Fig. 1). It is created by its class. A
class pan have muitiple super classes.

Knowledge objects run in parallel, and com-
municate with each other by message passing. A
knowledge object makes decisions based upon its
knowledge in responding to a request message. It
may send messages to other objects to ask for
their help in making decisions. It can acquire
lnowledge by lnquiry messages and can generalize
knowledge.

The behavior part is described in a procedural
manner. It contains methods defined in its class
and that inherited from itz super claszes. A
methed can be considered to be a procedure that
describes an action of the object or as an attribule
of the object, A method sends messages and mani-
pulates its own variables in this object. There are
zsome predefined methods {which are defined in
class Object) for accessing the knowledge-base
part There are a few predefined methods for
inferring frem the lmowledge in the knowledge-
basze part.

The knowledgebase part of an object is
described in a declarative manner. It is the local
knowledge-base of the cbject, containing rules and
facis defined in its class, inherited from its super
classes, and acquired through inquiry message Lo
other objects. This part could be thought of as
own variables of the object, except that there are
predefined methods to infer from the knowledge in
this part.

The monitor part is the demon for the object.
It eonirols incoming messages, monitors Ethe
chjeet's behavior and inferences, and improves Lhe
behavior and the knowledge-base of this object by
using gathered statislies.

The following section describes an object-
oriented language called ORIENTS4/K, which is
based on DEOM.

626

d. ORIENTB4/K

In this section, an outline of the language is
described with examples.

3.1. General Structure

The syntax and semantics of ORIENTS4,/K owe
much Lo and are extended from Smalltalic-B0. It
has the metaclassclassinstance hierarchy, and
the multiple inheritance from multiple super
clagzes. All the objects run in parallel.

A elass describes the common aktributes and
local knowledge-base of the instances of this class,
Juch an instance is called a knowledge object of
the class. Knowledge objectz comrnunicate with
each other by message passing.

The syniax and semantics of the kmowledge-
base part owe much to Prolog. We extended the
kind of terms and meodified the syntax in defining
the interface with the behavior part. The capabil-
ity of list processing is omitted, since list process-
ing can be naturally described in the behavier
part

In the fellowing subsection, the syntax and
semantics of ORIENT84,/K iz described with using a
modified BNF nolation, where / is used for selec-
tien instead of usual | , {a} is optional, both {aj...
and a.. represent aaa.., and ajbl... represents
aba... ba,

3.2 Clas=s

A class definition conzists of twe sections: a
class section and an instance section. The class
section defines . the class's monitor part,
behavier part, and knowledge-base part. The
instance section defines the instance’s
menitor part, behavior part, and knowledpe-
base part.
<class definition> 1= CLASS <class name>

INHERIT FROM <class name>...

CLASS SECTION <section body>

INSTANCE SECTION <section body>

<section body> =
OWN VARIABLES <own variable definition>...
MONITOR PART <menitor part>
BEHAVIOR PART <behavior part>
KNOWLEDGE-BASE PART
<knowledge-base part>

<own variable definitions =
<owr variable>| %\ <class name> |
<own variable> ;= <variable narme>

The declaration INHERIT FROM specifies the
super classes of this class. Variables can option-
glly be typed by classes. The default type for a
variable is any. -

3.3. Monitor Part

The monitor part bas the following functions:
access control, prioritorized message handling,
and statistics gathering. The specification of this
part is not fixed, since this part largely relates to a

system description language of the same

ORIENTE4 /K language family.

smenitor part> =
ACCESSIBLE FROM <access permission list>...
PRIORITY <methods priority>...

<access permission lisk> 1= <object name>
r<message patlern definition>.

<methods priority> ::= <priority level>
r<message pattern definition>. ..

The declaration ACCESSIBLE FROM specifies to
whom an instance shews which subset of methods
of the instance. An access permission list can be
added/deleted in the execution of the object by
the add_permission <access permission list> and
delete permission <aceess permission bist>
predefined methods of class Object.

Arrival of 2 message with a higher priority
method suspends the execution of any lower prior-
ity method which might be execuling. The
declaration of active wvalues would be specified in
the monitor part. A statistic gathering function
should be provided in the monitor part =o that the
method part can utilize the statistical information
for reorganizing methods and knowledge.

3.4. Behavior Part

The behavior part contains methods, Methods
are the attribubtes of the instance which are seen
by others. A method iz executed by receiving a
corresponding message, and may or may not
return an answer bto the caller. The execution of a
message may change the state of the object.

<behavior part> 1= <method definition>...
<method definition> 1=
<message pattern definition>
|} <temporary variable definition>... } |
<statement>..)
<temporary variable definition> o=
<temporary variable>{ \ <class name> }
<message pattern definition> 1= <unary selector> /
<binary selector> <formal variable deflnition> /
} <keyword> <formal variable definition> {...
<formal variable definition> ;1=
<formal variable>{ \ <class name >}
<lemporary variable> 1= <variable name>
<formal variable> ;= <variable name>

In order ko add and delete methods to and
frovm the object, we have the following predefined
methods; add method <method definition> and
delete_method <message pattern definition>.

A.5. Knowledge-Base Part

The knowledge-base part iz the loecal
knowledge base of the object. It contains the facts
of the object, facts of other objects, and rules
obtaining among objects which are defined In its
class, inherited from super classes, and/or
acquired by message passing. [t can be con-
sidered to be the object's special ewn variables
which econtain rules and facts. Unlike in
Smalltalk-80, the rules and facks defined in a class

and acquired by message passing, together wilh
inherited rules and facts, can be used by methods
defined in the elass and super classes. That is to
say. the visibility of rules and facts through the
super chains is equivalent to that of methods in
Srnalltallk-B0.

<lmowledge-base part> ;= <clause>...
<clause> = <fact definition> / <rule definiticn>
<fact definition> ;;= <left hand formula> .
<rule definition® 1= <left hand formula>
|{ <temperary variable definition>... } |
<right hand formula>},

<left band formula> =
<predicate> { <L-term>[}...)
<right hand forrmula>::=<atomic formula> /
gslf <message pattern>
<atomic formulal ;1= <predicate>{<R-term>}.1]...}

<l-term> = <string constant> / <own variable> /
<K-formal variable definition>
<R-term> = <slring constant> / <own variable>
J <K-formal variable>
[<temporary variable> /!
<string constant> ;:= "<characters>”
<K-lormal variable definition> 1=
<K-formal variable>{ ™ <class name> }
<K-formal variable> ;;= ? <variable name>

Four kinds of terms are used in the
knowledge-base part: a string constant, an own
variable, a K-formal variable, and & temporary
variable. As shown in Table 1, string constants
correspond to c:ur.\ﬁstants in Prolog. K-formal vari-
ables correspondsite variables in Prolog and are
used to pass information between the behavior
part and the knowledge part. There are no
correspondents of own variables in Frolog. Own
variables are used to pass information from the
behavior part to the knowledge part. When unified,
an own variable acts as a constant in Proleg, sinee
it has been bound to an object. In the clause of
brother(?x, ?¥), f declares a temporary variable as
in the methed part. Thus, temporary variables
correspond Lo variables in Prolog.

A mechanism to call a method of an object
from inside the knowledge-base part of the object
is provided. By using this mechanism, preserving
all the backtrack information, a rule can call a
methed for more information, and then continue
inferences.

The contents of the knowledge-base part can

627

be changed st any time by the execution of the
predefined methods addKB { <clause>) appendKB
{ <clause>) and deleteKB { <clause>). The addKB
and appendKB methods correspond to asserta and
assertz of Prolog, respectively.

3.8 Interaction and
Knewledg e Base Part

As in Conniver [Sussman and McDermott
1972], a method can initiate inference by using the
predefined methods unify and [oreach unify.
Information is passed between the behavior part
and the knowledge-base part through L-formal
variables and own variablez. Symbol 7 is used to
show that 7<variable pame> returns a unified
result from the knowledge-base part and this
resull is accessed by the <variable name> in the
behavior part. The unify method returns one set
of unifled results for Lhe L-formal variables. The
foreach_unify returns all sets of unified resulis for
the L-Tormal variables. It sends value for each set
of unified resuit to the bleck that follows.

For example, a method which sends mail to all
the brothers of somebody m is described in this
maode] as follows:

INSTANCE VARIAHLES
john tom mike andy peter henry robert

BEHAY¥IOR PART
sendToBrothersOf m mail: messt | x]
foreach_unify(brother(m, 7x))
doef :xl + x sendMail: mess1].
KNOWLEDGE-BASE PART
PFEUIEI'I
brother(%x, 7y) | £
father(?x, £), father(?y,).
“FACT
falher(john, henry),
father{tom, robert),
father{mike, henry).
falher{andy, robert).
father{peter, robert),

The following is an example of changing the

between Behavior

«content of the knowledge base part. In order to

acquire the facts of the molher-child relation, the
following expression, which yields broadcasting, is
execuked:
askMother | m x|
foreach_pnify{name{?x}}
doi[:x | m + x mother,
appendKB{motbher{x, m)}].

Table 1 Correspondence between ORIENTS4 /K variables and Prolog variables

CRIENTS4,/K

Prolog

father (?x, "¥'}.
fatner(x, y).

brother {7x, g | £1
father(Zx, f£), father(?y, £).

father (X, v1.
nane

brother (X, ¥) -
father (X, F}, father(¥, F}.

628

2.7. Synchronization

In Smalltalk, cbjects are not executed con-
currently. Thus, a message is sent and the object
blocks until the receiver returns the results. In
conktrast, objects are executed concurrently in
DKOM. In order to maximaly wtilize the capability
of this modeling, we added a syntax for the non-
blecking message zend that does pot need the
result te be returned. Thus, <expression> can be
in the form:

= <object name> <message pattern>.

The non-blocking message send is effectively used
to send a broadeast message as shown in one of
the previous examples,

4. BUILDING AN EXPERT SYSTEM
4.1. Program

In arder to examine the descriptive capability
of ORIENTE4,/K, a well-known expert system prob-
lem, the buillding of an expert systemn for the
emergency management of inland oil and hazar-
dous chemical spills at the Oalk Ridge National
Laboratory ORNL, was chosen. This expert system
was deseribed in EMYCIN, KAS, EXPERT, OP3-G,
ROSIF, RLL, and others, in order to compare their
deseriptive capability [Hayes-Roth et al. 1983].

Thiz= problem is classified as a crisis-man-
agent problemn. When a discovery of spills of oil,
hagardous chemical, or base is reported, the
expert system locates the source of the spill,
identifies the spilled material, estimates the quan-
tity of the spill low, evaluates the bazards, notifles
inhebitants, designates countermeasures for the
spill flow, and reports to responsible authorities.

An arrow (ndicates the superclass-subcless relation

The expert system possesses knowledge of geo-
graphical inferrnation, quantities and kinds of
materials in storages, characteristics of the
materials, countermeasures, regulations concern-
ing the hazards of chemical materials, and so
forth. In order to pursue these taslcs, the expert
system infers from this knowledge, asks the
reporler, and frees men for getting meore informa-
bion.

We built a simplified version of this expert sys-
tem with using ORIENTS84,/K. The program for this
expert system consists of fve classes: class Prob-
lem defines an object which receives the discovery
of spills, class ORNL defines an object which
advizes about the way to find the source of a spill
and to identify the material, class Building defines
the storage of malberials and countermeasures,
class 02C defines the inference method for finding
the souree, and class Material defines the charac-
teristics of materials. The hierarchical relation
ameng these elasses is shown in Fig. 2.

In execution, a user sends messages to class
Problemn to ereate an instance problemi, which
contains the information about the discovery of a
spill. Then, the user seads instance probleml ko
the instance ornl of the class ORNL. The instance
ornl analyzes the information and advises the user
for locating the souree of the spill According to
the advices, the user gets more information, and
reports back to the instance ornl. When the
sources are determined, the instance ornl sends
messages: to an instance bldgdXXX, which is an
instance of class Building to perform countermeas-
ures. Then, the instance ornl sends the user
advice for locating other sources of spills. Fig. 3
shows the relation of objects in execution. Fig. 4
shows a part of Lhe class definitions.

Building
\ N
] L
&

LY

bldg302l

bldg3szs

An arrow indicates that the cbjeet helds an object. A boldface

arrow indleates thet the cbject sends a messsge bo an instance
or a cless. A dotted arrow indicates that the abject is created

Fig. 2 The hierarchical relation
among the class

by the class
Fig. 3 The relation among objects in execution

CLASS s
INHERIT FROM Object
CLASS SECTICN

INSTANCE SECTION

EIMOWLEDGE-BASE PART

-

findSource(7blda, Psource, P=mat) | loc thldg |
Elow _Joc(loc), find{7zource, loc),
source (tbhldg, Psource),
stocage({?=mat, 7source), obj{Tbldg, tbldg).

find(?source, ?dest) | vy |
arclyy, ?dest), findl(?soucce, yy).
find(?source, ?dest) | mat |
posmat (mat) , storage(mat, 7source),
!, self checkpoinkt: ?dest.

findl { ?source, Zdest) | tk |
merge (2dest) , 1, arc(tt, ?dest), Ess(tt),
!y self checkpoint: 7dest, find(7source, ?dest).
findl (?source, ?dest) | |
fss (?dest), find(Zsource, Tdest).

CLASS ORL
INHERIT FROM O5C Material
CLASS SECTIRI

INSTANCE SECTION
BEHAVIOR PRRT

call: problem | bldg loc mat |

foreach_unify({findSource (?bldg, 7lec, Zmat)) do: [
ibldg | -*bldg countermeasure: loc.

1

problem set_material: mat.

checkpoint: point | |
Terminal print: 'Please inspect '.
Terminal print: point.
Terminal print: ' Is the liquid flowing in '.
Terminal print: point,
Terminal print: '? *.
(Terminal getstring) = 'y'
ifTrues [
appendiB (flow (podnt)) .

Ttrue.

|
ifFalse: [Tfalse).

Fig. 4 The description of an expert system in ORIENTE4 /K

629

630

4.2. Discussion

As we see the part of the program of this
expert system in Fig, 4, ORIENT84/K naturally
describes the problem in both the object-oriented
paradigm with messege passing and the predicate
logie-based paradigm.

The same expert system has been pro-
grammed using Prolog. The structure of the part
of the program for inference was the same as that
in the elass ORNL. Since Prolog does not support
the objecl-orienled paradigm, we used a file for
each instance in the ORIENT84/K program and
reconsulted the files as the program proceeded.
One of the weak poinls in Prolog is the difficulty of
narming predicetes uniguely. In the other words,
there is no visibility contrel in Proleg. Thus, even
though we store elawses in diferent files, all of the
clauses are flat ab the time of execution. This
caused program bugs. On contrary, ORIENTS4,/K
provides a knowledge-base for each object. There-
fore, it was easier to write this experl system in
ORIENTB4,/K. ORIENT84/K alse surpassed Prolog in
writing parts other than unification.

We also described the same expert system in
LISF. In the LISF program, we stored the geogra-
phy of the drain flows in a lizt and searched the
possible sources of the spill on the list. It seems to
be difficult to change Lhe list when new buildings,
new drains, or new makerials were added.

When we weould implement the sarmne expert
system in Smalltalle, we should define a class which
provides mekthods of inference and the strueture
to retain knowledge, The program would leok simi-
lar to that wrilten in ORIENT84/K. The ss=ential
difference, however, is that the inference mechan-
ism and the knowledge-base are defined together
in a class in Smalltalk, while they are contained in
an object or distributed in multiple objectz in
ORIENTE4,/K,

5. Conclusion

In this paper we proposed the methed for the
Distributed ¥nowiedge Object Modeling (DKOM) and
deseribed the outline of an ohject oriented
tanguage called ORIENTS4 /K as a realization of this
modeling method.

The modeling method views & knowledge sys-
tem as Lhe composition of cooperative knowledge
objects, where each objecl holds its knowledge-
basze and comrnunicates with other objects by mes-
sage passing in order to acquire kmowledge. These
features coincide with the human activities of
communicating, aecquiring knowledge, making
decisions, and doing actions.

The language provides the rule/fact level
modularization and the objecl level modulariza-
tion. Thus, we can build knowledge systems in the
object-criented maenner and the predicates logic-
based rule-oriented manner. Each knowledge
object consists of the monitor part, the behavior
part, and the knowledge-base part. The behavior

part can be considered as a meta function to the
knowledge-base part, and the monilor part that
interfaces other objects {or worlds) as a meta
function to the behavier part. With a little experi-
ence in writing programs in ORIENTB4/K, we
believe such a combination facilitates building
large knowledge systems in varicus fields,

The prototype of the ORIENTB4/K system is
implemented in Franz Lisp and running on the
Unix} operating system. The specification of the
language is net complete, especially for the moni-
tor part. This is partially because we would still
like to improve the language through the feedbacle
of writing programs. The other reason is beeause
ORIENT84,/K is a member of the ORIENTB4 family of
languages which run on a distributed object-
oriented architecture [Ishikawa and Tokoro 1984],
and we need to keep coherence throughout the
lamily langueges.

The distributed ebject oriented architecture
has been designed and its software simulator is
running alse on the Unix operating system. Imple-
mentation of the ORIENTB4,/K system on this archi-
tecture is aboubt to start, besides the design of
seme obher family languages and the modification
of the architecture to execute ORIENTB4,/K pro-
grams efficiently before siLlﬂnnig\atiun planned in
1985, .

ACKNOWLEDGEMENT

The authors are indebted to Motoo Kawamura
and Takeo Maruichi for their help in the implemen-
tation of ORIENTB4/K as well as for Lheir valuable
comments. The authors are also grateful to the
members of ICO0T WG2; the discussion with the
members on wide spectrum of topics in knowledge
representation, languages. and systems inspired’
this work,

REFERENCES

Barr, A and Feigenbaurn, E.A., "The Handbook of
Artificial Intelligence"”, Volume 1, 2, and 3, William
Kaufmann, Ine., 1981, 1982, 1982,

Bobrow, D.C. and Winograd, T.. "An Overview of KRL,
a Knowledge Representation Language,” CSL-76-d,
Xerox PARC, July 1978

Bobrow, D.G., '"The LODPS Manual," Pale Alto
Reszeareh Center Xerox PARC, KB-VLSI-81-13, 1982

Forgy, C.. "The OP3-5 User's Manual," Technical
Rept. CMU-C35-81-135, Computer Science Dept.,
Carnegie-Mellon Univ., 1981,

Furukawa, K. Takeuchi, Yasukawa, H, and Kunifuji,
3., "Mandala : A Logic Based Knowledge Frogram-
ming Systemn,” FGCS "84, 1COT, 1984,

Coldberg, | and Robson, D, “Smalltaik-80: The
language and its Implementation,” Addizon-Wesley
Publishing Co., 1983.

t Unix is a trademark of the Bell Laberataries.

Coldstein, LP. and Roberts, RB., "NUDGE: A
Enowledge-Based Scheduling Program”, 1JCAL 5,
1877,

Geldstein, LP. and Bobrow, D., "An Experimental
Dlescription-Based Prograrnming Environment:
Four Fapersz,” C5L-81-3 Xerox Palo Alto Research
Center, 1961,

Hayes-Roth, F., Waterman, D.A., and Lenat, D.B.,
“Building Expert Systems,” Addison-Wesley Pub-
lishing Co., 1983.

Ishikawa, Y. and Tekoro, M., "The design of an
object oriented architecture,” Proe. of the 1ith
Ink'l Syinp. vn Cornputer Architecture, Jun 1984,

Mizoguchi, F. Katayama, Y., and Owada, H., "LOOKS:
Knowledge Representation System for Designing
Expert System in the Framework of Logic Pro-
gramming,” FGCS "84, ICOT, 1564,

Sugsmenn, G.J. and MeDermott, DV, "From
PLANNER to CONNIVER: A genetic approach,”
AFIPS, 1972,

Winograd, T., “Frame representations and the
declarative /procedural conktroversy,” in Represen-
tation and Understanding studies in Cognitive Sci-
ence, Bobrow, D.G. and Colins, A., eds., Academic
Fress, 1975.

631

