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ABSTRACT

It is often suggested that the built-in
search strategy of conventional PROLOG imple-
mentations makes difficult weriting heuristic
search-based progrems. Experience from writing
a4 large search-based program in PROLOG to
perform microcode synthesis suggests that very
intricate heuristics can be easily implemented.

1 INTRODUCTION

It is widely argued [3). [20] that the
buiit-in search strategy of conventional PROLOG
[2), [15) implementations makes artificial
intelligence programming intrinsically ineffi-
cient or awkward. This paper discusses shy this
is not necessarily true, and argues that
PROLOG's search mechanism can be considered to
be an extremely convenient default. The discus-
sion is based upon the author's experience
implementing the expert system UHS (Universal
Hicrocode Synthesizer) in over 15,000 source
tode lines of PROLOG [16]). The synthesizer
consists, in approximately equal proportions,
of a compiler, a global data and control flow
2nalyzer, and a rule based code transformation
system. This experience has found that PROLOG's
built-in search strategy to be very convenient.

2 THE PROBLEH DOHAIN

Cne of the main ideas of UMS is that a
procedural description of an instruction set
(see [18] page 1258) is & completely accurats,
but imappropriately implemented, microprogrem.
The challenge of WHS is to apply program
TRANSFORHATIONS to evolve this untargeted
microprogram so that it can be used on the
target microengine. Insight about which trans-
formations should be applied where is obtained
from analysis of the target hardwere description
(see [1B] page 224 for the AH2001 based
microengine description used to experiment with
UHS). The hardware description for UHS many be
at different levels of detail, as UHS acoepts
arbitrary hardware models. A more detailed

hgrﬂuara model allows for more cleverly produced
microcode, but costs extra synthesis effort,

Previous work with the HINER system [17]
has shown that a manually guided transformation
based system can produce microcode. HIXER uses
three types of transformation rules supplied by
a user for a spevific micreengine, called macro-
knowledge, semantic knowledge, and micro-
knowledge that explicitly describes how to
translate the source microprogram. UHS auto-
matically discovers the same knowledge by
inspection of the hardware description.

3 INFERENCE ENGINE IMPLEMENTATION

The synthesis problem discussed here is
based upon a representation of programs in terms
of ARCE representing data and control depen-
dencies, and NODES representing operations upon
data {see figure 1). This type of progrem repre-
sentation is commonly used in the optimization
phases of conventional compilers [1], [4]. The
first two parts of UHS translate ISPS source
code to the arc and node form before
transformation begins. Both the instruction set
deseription and the hardware description are
compiled into are and node form.

In this discussion, variasbles of the
source code will be simply termed variables. and
variables in the PROLOG implementation will be
termed logical variables. The hardware nodes
(clauses with head “henode™) of figure 1 have 4
main parameters; first a node operation type,
then & list of inputs, & list of outputs, and
last an unique node number. Each input or output
list consists of a sublist for each operand.
Eoch of these sublists consists first of an
operand name, second a list of attributes, and
last a list of arc connections to other nodes,
These connections are represented as lists of
node numbers that are implicit pointers to other
nodes. An operand name of "_", representing the
anonymous logical variable of PROLOG, means a
control flow arc. An operand name of “[]"
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represents an unnamed DIRECT LINK to the other

nodes which make up a source code frapment. An

operand with any other name represents an arc to
& source code date dependency involving a
variable with the ssme name.

The main activity of the synthesizer is
to take the arcs and nodes from a code fragment
of the instruction set specification, and HATCH
them to a portion of the hardware specification.
If no appropriate match can be found, then the
code fragment from the instruction set
specification is transformed into something
different, and the process repeated. The nodes
are stored in the global database as PROLDG
clauses. The matching process has tws parts:
matching the nodes and their interconnections
{such as the add instruction being HAPPED to be
performed on the ALU), and mapping the variables
(such as the program counter being mapped to a
specific internal register). When each of the
instruction set nodes is completely mapped to a
hardware node, then the code generation phase of
microcode synthesis is complete.

Teo different implementation techniques
could be wused in PROLOG to mocomplish the
pattern matching between two nodes. One tech-
nigue would be to write an interpreter that
reads two specified nodes from the data bese,
and performs a program of data acoess operations
which check if node sections correspond.
Alternatively, & skeleton of a node could be
built which is unified with clauses from the
data base, with further processing of any
ununifiable details. The second approach is
taken in the synthesizer. which invokes a search
of clauses in the data bass by & conventionally
implemented PROLOG interpreter. The technigques
used to heuristically guide this PROLOG based
search will be the topic of the rest of this

paper.
4 ARC SEARCH

The synthesizer operates upon one source
code fragment of the instruction set specifi-
cation at a time. Each of these nodes has the
clause name “"instnode™ to represent its origin,
M5 takes a list of the nodes of the code
fragment, and crestes a second list with the
most common (such as ASSIGN) types of nodes
ocourring last. Thus the search order of the
nodes are heuristically derived. The motivation
for this heuristic is to prune away as much of
the search tree as early as possible by
initially basing the search on any unusual
operations within the instruction set specifi-
eation code.

In the new node order described by this
second node 1ist, the synthesizer creates a data
structure similar to the instruction set node
(see figure 2) called a TEMPLATE. This struog-
ture has a different clause name, “hwnode™, to

correspond to clauses of the global data base
that represent the hardware description. The
template has the same operation name, the same
number of input and output sublists, and &
logicel variable replaces the node number.

During the activity of creating the
template, a list of ares is created. Each member
of this ARC LIST has three components: the arc
of the instruction set node, a list of logical
variables of the corresponding “henode™ tem-
plate arc, and a 1ist of descriptive information
useful later in the synthesis prooess. Note that
sections of this arc list still correspond to
the original node ordering heuristic. When an
arc is sucocessfully matched with, or compared
to, an arc of the hardwere, the arc is ssid to be
VALIDATED. Next, the arcs in the arc list are
ordered for heuristic search by copying them
into other lists called bins. Part of the
BOOKKEEPING information within each are
records which bin that copy of the arc is placed
into. The six bins are for control flow, simple
direct links, previously mapped variables,
previously unmapped varisbles, difficult to map
variables of either type, and difficult direct
links.

Thase ares that represent control flow
input are placed into the FIRST BIN. Direct
link arcs to other nodes go into the SECOND BIN,
and a copy of the same arc goes into the sixth
bin, The THIRD BIN contains aros of variables
that hed previously been mapped to hardware
registers, with a copy to the fifth bin. In the
FOURTH BIN are those arcs that the synthesizer
had not mapped to hardware, also with a copy to
the fifth bin. Copies of both previously mapped
and previously unmapped variable arcs are in the
FIFTH BIN. The SINTH BIN contains coples of the
direct links. Finally. the contents of bins are
concatenasted in order to form an arc stream.
Although this stream is implemented as a
sequence of arcs, each element of the stream
also describes the bin it originally comes from.
Different ocode is used to process arcs from each
bin. Note that if the synthesizer would process
all the arcs in arc stream then the arcs would
be analyzed in the order shown in figure 3. This
is one example of where PROLOG'S built-in search
strategy does not preclude heuristic search.

4. 1 CONSERVATION OF COHPUTATIONAL EFFORT

The different bins represent different
types of processing heuristics used to validate
the use of thet arc in synthesis, The order of
the bins represents the amount of computational
effort needed to process that arc. The book-
keeping information within each element of the
arc stream becomes especially important in those
arcs represented by more than one bin.



A common logical variable called a TAG,
within each bookkeeping region of the duplicated
arc pair, is set to an atom when the processing
of the first duplicate of the are stream 1is
syooessful. If unsuccessful, then the logicel
variable remains unchanged. This indicates that
a larger amount of computational effort is
needed to validate the arc. Code processes an
arc only when the tag is not an atom. Thus the
teg cen act as a message, communicated between
one arc and its duplicate further down the arc
list, to inhibit further and redundant pro-
cessing of the aro. Note that the use of two
attempts to search part of a search space has an
offect similar to the PROLOG technique of
Intelligent Backtracking [8], [9]. [10]. [11].

The bins described above were introduced
in order of increasing computational effort. The
first bin for control flow arcs reguires a
trivial amount of ocomputational effort to
validate, It is only necessary to note down the
control dependencies, such as that & microword
field needs to have a specific valus.

The direct links between two nodes, as
represented within the second bin are usually
very easy. However, when complex arithmetic or
logical operation is to be performed on a simple
AL, intermediate values of the calculation need
to be temporarily stored and later fetched. In
such a case, the initial direct link would fail
validation, and the tag would be set to an atom
Further proceseing would later cantinue upon
this arc as it is represented in the sixth bin.

It is almost as easy with the contents of
the third bin to match a previously mapped
hardware variable with one from the instruction
set. Such a match already exists as a histor-
ical reference for a previously synthesized code

fragment.

Huch more effort is needed in arcs of the
fourth bin: those with wariables had never
previously been mapped. The characteristics of
the variables must be checked for compatibility,
such as matching bit width read-only (constant
ROM) or read-write (registers) use, number of
cells in memory errays, etc. Failure of vali-
dation for arcs from the third or fourth bin
would also potentially trigger further and much
more costly processing in the fifth bin.

The processing for arcs of the fifth bin
will attempt to deal with problems in matching
an instruction set wveriable with one of
hardyare, Often in the machine desoription. the
representation of an individual value passing
though a bus will be represented by chains of
assignment statements. In other cases, a pre-
viously mepped variable will not be “readable"
and “writeable® by hardeare resources (such as
both the ALU and the shifter) within the
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directed graph of hardware data flow. In this
case, the current instruction set variable use,
and any previous uses of that variable, will
have to be reanalyzed and REHAPPED to meet this
new set of simultaneous constraints. Further-
more, if some but not all of these remappings
are possible, sattempts will be made to use
transformstion rules to modify those in-
struction set arcs that cause the problems. The
recursive nature of the remapping activity can
potentially cause the disruption and reanalysis
of all previous work, at a cost much greater
than the original effort. Arcs in the sixth bin
create intermediate variables for complex
calculations, at great computationsl expense.

The processing of an arc stream is
potentially & very expensive computational
process, especially for those arcs in the fifth
and sixth bins. @At each step in the way,
heuristic based oost funotions enalyze the
sucoess rate of the progress up to that point.
The cost functions take into account the total
number of each type of arc. the grand total of
aros, and the individual and collective success
rate of these categories. If at any time the

ional effort has not been suooessful
enough relstive to the amount of effort
expended, then that the line of reasoning (or
that part of the search space) is abandoned.

The bookkeeping information is also used
to implement automatic commutativity of oper-
ands within the arc stresm. This is based upon a
table of operation types that describes which
gre commutative {addition. inclusive or ex-
clusive or, etc.). When a template for these
types of nodes is made, both operand orien-
tations are put into the arc stream. The book-
keeping information then allows matching to be
sequentially attempted on esch. Commutativity
further enriches the flexibility of search in
this Prolog-based implementation (see figure a4).
putomatic generation of temporary variables is
also facilitated by this bookkeeping. Orig-
inally both commutivity and temporary variable
creation were implemented as individual rules.
However, for efficient synthesis of irregular
hardware architectures, these were directly
added to the search processing.

5 NODE SEARCH

The heuristics involved in matching a set
of arcs within an instruction node set to those
within a hardware node set have been described.
Mext, the choice involved in determining which
hardware nodes to be involved in the matching
processes will be desoribed. The nodes of both
the instruction set specification and the
hardware specification are sequentially stored
in source code order in PROLOG's global data
base. If a template for & node was referred to by
the veriable name X, then a simple minded
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approach to using these templates would be to
simply oall X from PROLOG. for all nodes, and
process the arc 1ist. This would cause exhaus—
tive search.

To provide a large reduction of the search
space, UHS tries to use in the search for
hardware nodes any insights derivable from
processing of the arc list. A match candidate
node is specified one at a time. as needed,
during the processing of the arc list.
Specifically., direct links between nodes are
often used to match the instruction set fragment
nodes to the hardware. It is equally important
to relate any experience gained from previous
synthasis activity to this decision making

Process.

When processing begins on each arc
(oxcept those ares from the first bin), if a
hardware node is not yet associated with that
arec, then one is fetched from the data base. A
list of previcusly used hardwere resources (such
a5 a node from the ALU} is kept in the global
data base, and ordered as a stack. The use of a
stack is based upon the assumption that the
hardware resources needed for the current
synthesis may be most similar to the synthesis
Jjust completed. To fetch a hardeware node, the
hardware resource stack is scanned for a node of
the appropriste operation. IFf such a node is not
found, then the global data base is searched in
its source code order. Figure 5 shows how this
search heuristic overrides the sequential
search order in a PROLOG data base. Note that
the use of this hardware use stack produces
microcode with a much more vertical style. Other
work [7]. [12), [13], [14), [19] addresses the
issue of optimization for horizontal micro-
engines.

6 CONCLUSTON

In oonolusion, although the top-down,
left to right sesrch strategy of PROLOG is
always present as a default. it is possible to
write heuristic searches with radically dif-
ferent search patterns. An existence proof of
the success of these programming technigues has
been developed in the implementation of an
expert system for microcade synthesis. This im-
plementation did not require the implementation
of a separate interpreter, but only specialized
code to fit the problem domain. The results from
this work are consistent with other efforts [5],
[6], which have shown PROLOG to be as efficient
as other Artificial Intelligence programming
languages,
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ISPS source code:

var2 = varl + 1;

corresponding PROLOG node notation:

control flow

hmnde{'ﬁmﬂm",
[[1.£). [14]]).
13).

hunode( 'ADD',

[
['er1 ', [1.[6.11]1],
(1. [)[13]]

f’mn,nsm,
14).

hwnode ("ASSIGN',

control flow
['cHOICE", . "sUBRDEF"]). [12]).
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node structure:

} data dependency arcs

add operation node

[ [FEHUHEjLJ'sumtEF']L 12]].
][I'], [*FunctionName', _ 'ADD" ]1, 141

[['var2', [["WIDTH', _ [0,2]]). [22]]].
15).

Figure 1: An ISP language statement and its corresponding representation as arcs and nodes.
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PROLOG template: node structure;

hunode{ ' CONSTANT ",
t._ CONSTANT

hwnode(*ADD", control flow

[_l'_}_]'
= ¥
o i

1.
(...
).

hwnode {*ASSIGN',
[+ ]
(. .]
L
...
_h

control flow

Figure 2: A template corresponding to the nodes of figure 1. and its arc and node representation

Arc Processing Order
instnode( "CONSTANT',

HH. [1.[142]) M 1)
13).
irstmde?'fﬂl.‘l'.

[ [[°'CHOICE". _, 'SUBRDEF*']]. [12]). (1)
[*var1'.[). [6.11]). (5) {9)
Lnn.nau (6) (10)
(10112, 195110, (3) (13)
14).

instnode( ' ASSIGN',

[
[ [['CHOTCE', _, 'SUBRDEF']). [12]].  (2)
31’1. [*FunctionName', _ *ADD" 1], [14]) (&) (14)

{E;uar?‘, [[*e1DTH'. _ [0,3]]).[231]].  (8) (12)

Figure 3: Potential order of erc processing.



Figure 4: Potential

imtnuda(imm'ﬁ'.
[[’1.;1,[1411],
13).

instnode{ ‘ADD',

[
[ [['CHOICE", _, SUBR
vari’, [1, [6,11])

1. [ [13]]
1.

[T\
i
{((1. 1) [15]1).
14).

instnode(" ASSIGN",

—
H

instruction set fragment:
1n5'tnud&% 'ADD",

per*JL [12]1.

([*CHOICE", _, *SUBRDEF']]. [12]]).
[T1. [[*FunctionNeme®, _, *AD0" ]1. [14]]

gé;"fm‘- [{*WIDTH. [U, 3‘311& [23] ] 14

hardware resource usage stack:

hwdatapath('ADD*, 722).
hwdatapath(*ADD', 237).
hwdatapath(*ADD', 206).

instruction set fragment source code:

vard = var? + var2 + 1;

a sample of nodes in the order they
are found in the global data base:

hwnode{"ADD', _, _. 7).

hwnode(*ADD", _ _ 27).
hwnode(*ADD'. _, _, 58).
hwnode{ *ADD®, ., 237}
henode('ADD", _, _, 206).
hwnode(*ADD", _ _, 477).
hwnode( ' ADD". _, _ 385).
hwnoded 'ADD°, _, _, 722).

hwnode( ' ASSIGN", _, _, 723).

hunode(*ADD", _. _. 801).

[T'] [[ Funutiurﬂm

Arc Processing Order

(@) (15)

(1)
(s) (8) (11) (14)
(6) (1) (12) (13)

(3 (7

(2)
(4) (18)
(10) (16)

order that arcs are proocessed with commutative ADD.
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Arc Processing Order

*SUBRDEF" 11, [19 (1)
ULEE' ! [12’.*'291 1 (el {8)
][ vard', [ 1. [161] (a)
(1[0, [24100, (4)
23).
instnode('ADD".
[ *CHOICE', _, 'SUBROEF! ]].[mi}, 2)
[T15[ Functioniame®, _, *ADD* 11, {23]), {ga}
1.
[[{].EL[:ZS'H]. (6)
24).
instnode('ASSIGN',
[['CHOICE', . 1911, (3}

'HIJU 1281 (D

h;unr#', [['wiDTH', _, [0.3]]L [29]]) (11}
2a).
Node Search Order

(s}
{6)
{m
(3)
{4}
(a)
(a)
(2)
{1

(10)

Figure 5: Node search
order for ADD node.



