PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
OM FIFTH GENERATION COMPUTER SYSTEMS 1584,
edited by 00T, © ICOT, 1934

533

THE TRAWSPUTER IMPLEMENTATION OF OCCAM

David May and Roger Shepherd

Inmos Limited
Whitefriars
Lewins Mead

Bristol
England

ABSTRACT

The transputer is a programmable VLSI
device with communication links for
point-to-point econnection to other
transputers. Ocecam (*) is a language
which enables a transputer system +to
be described as a collection of
processas which operate concurrently
and communicate through named
channels. This paper describes ‘Thow
the transputer implements the
communicating processes of oocam,
providing an efficient implamentation
of concurrency and message passing in
a distributed system.

1 INTRODUCTION

The ooccam programmi ng language
enables an application to be
described as a collection of

processes whiech operate concurrently
and comunicate through channels. In
such & dascription, gach occam
process describes the behavior of one
component of the implementation, and
each channel describes a connection
between components.

The design of occam allows the
components and their connections to
be implemented in many different
Ways . This allows the choice of
implementation technigue to be chosen
to suit available +technology, to
optimise performance, or to minimise
cost.

VLSI technoleogy allows a large number
of identical devices te be
manufactured cheaply. For this
reason, it is attractive to implement
an occam program using a number of
identical components, each programmed
with the appropriate occam process. A
transputer is such a component.

The transputer can therefore be used
as a building Tblock for fifth

generation systems, with occam as the
associated design formalism.

2 ARCHITECTURE

An important properey of VLEI
technology iz that communication
between devices is wvery much slower
than communication on the same
device. In a computer, almost every
aparation that the processor performs
involves the use of MEMOTY - R
transputar tharefore includes both
processor and memory in the same
integrated circuit device.

In any system constructed from
integrated circuit devices, much of
the physical bulk arises from
connections between devices. The size
of the package for an integrated
clirouit is determined more by the
number of connection pins than by the
size of the device itself. 1In
addition, connections between devicas
provided by paths on a circuit board
consuma a congiderable amount of
spage.

The speed of communication between
electronic devices is optimised by
the wuse of one-directional signal
wiraes, each connecting two devices.
If many devices are connected by a
shared bus, electrical problems of
driving the bus require that the
gpeed iz reduced. Also, additional
control logic and wiring is reguired
to control sharing of the bus.

To provide maximum speed with minimal
wiring, the transputer uses
point-to-point serial communication
links for direct connection to other
transputers.

{*} occam is a trademark of the INMOS
Group of Companies

534

3 ooChAM
Occam enahles a syatem to bea
described as a collection of
concurrant processes, which

communicate with each other and with
peripheral devices through channels.
Ocecam programs are built from three
primitive processes:

Vo= g agsign expression =
to variahle v

al e output expression e
to channel ¢

e T v input from channel ¢
to variable v

The primitive processes are combined
to form constructs:

SEQuential components executed
one after another
PARallel component s executeﬁ

together

AlTernative component first ready
is executed

A construct is itself a process, and
may be used as a component of another
construct.

Conventional seguential programs can
bea exprassed with wariables and
assignments, combined in seguential
constructs. IF and WHILE constructs
are also provided.

Concurrent programs can be expressad
with channels, inputs and outputs,
which are combined in parallel and
alternative constructs.

Each ocoam channel provides a
communication path betwean two
concurrent processes. Communication
is synchronised and takes place when
both the inputting process and the
outputting process are ready. The
data to be output is then copied from
the outputting process to the
inputting process, and both processeas
continue.

An alternative process may be ready
for input from any one of a pumber of
channels. In this case, tha input is
taken from the channel which is first
used for output by another process.

The benefits of point-to-point
communication have already baen
mentioned above. The cholice of
synchronised communication simplifies
programming as it prevents the loss
of data. The choice of unbuffered
communication removes +the need for
any store to be assocciated with the
channel. Copying data from the
outputting process +to the inputting
process is clearly essential for
communication between transputers,
and has significant additional
performance advantages. It i1s easy to
make copying within a machine fast by
use of microcode.

4 THE TRANSPUTER

A transputer system consists of a
number of interconnected transputers,
each executing an occam process and
communicating with other transputers.
Az a process executed by a transputer
may itself consist of a number of
concurrent processes the transputer
has to support the occam programming
model internally. Within a transputer
conourrent processing is implemented
by sharing the processor time between
the concurrent processes.

The most effective implementation of
simple programs by a programmable
computer is provided by a sequential
Proceassor. Conseqguently, the
transputer processor is fairly
conventional, except that additional
hardware and microcode support the
occam model of concurrent processing.

4.1 Beguential Processing

The design of the transputer
processor exploits the availability
of fast on-chip memory by having only
a small number of registers; six
registers are used in the execution
of a seguential process. The small
number of registers, together with
the simplicity of the instruction set
enables the processor to have
relatively simple {and fagt)
data-paths and contrel logic.

The six registers are:

The workspace pointer which
points to an area of store whers
local wariables are kept.

The instruction pointer which
points to the next instruction to
be axecuted.

The operand register which is
used in the formation af
instruction operarnds.

The A, B and € registers which
form an evaluation stack, and are
the sources and destinations for
most arithmetic and logical
operations. Loading a value into
the stack pushes B into C, and A
into B, before loading A. Storing
a value from A, pops B into A and
C into B.

REGISTERS LOCALS PROGRAM

A

B

c

Workspace

Hext Inst
\\xh L

Operand

Expressions are evaluated on the
evaluation stack, and instructions
refer to the stack implicitly. For
example, the 'add' instruction adds
the top two values in the stack and
places the result on the top of the
stack. The use of a stack removes the
need for instructions +to respecify
the location of their operands.
Statistics gathered f£from a large
number of programs show that three
registers provide an effactive
balance between code compactness and
implementation complexity.

4.2 Instructions

It was a design decision that the
transputer should be programmed in a
high-level language. The instruction
sat has, therefore, been designed for
simple and efficient compilation. It
contains a ralatively small number of
instructions, all with the same
format, chosen to give a compact
representation of the operations most
frequently ocecdring in programs. The
instruction set is independant of the
processor wordlength, allowing the

535

sama microcode to bhe used for
transputers with different
wordlengths. Each instraction
consists of a single byte divided
into two 4 bit parts. The £four most
gignificant bits of the byte are a
function code, and the four least
significant bits are a data value.

Function Data j

7 4 3 a

4.2,1 Direct functions

The representation provides for
sixtean functions, each with a data
value ranging from @ to 15. Thirteen
of these are used to encode the most
important functions performed by any
computer. These incluoede:

load constant
add constant

load local
store local
load local pointer

load non—-local
store non-local

jump
conditional jump

call

The most common operations in a
program are +the loading of samall
literal walues, and the loading and
storing of one of a small number of
variables. The 'load constant'
ingtruction enables values between &
and 15 to be loaded with a single
byte instruction. The 'load local'
and 'store local' instructions access
locations in memory relative to the
workepace pointer. The firat 16
locations can be accessed using a
single byte instruction.

The "load non-local' and 'store
non=-local’ instructions behave
gimilarly, except that they access
locations in memory relative to the A
register. Compact segquences of these
instructions allow efficient access
to data structures, and provide for
simple implementations of the statie

536

links or displays used in the
implementation of block structured
programming languages such as occam.

4.2.2 Prefix functions

Two more of the function codes
are used to allow the operand of any
instruction to be extended in length.
These are:

prafix
negative prefix

All instructions are executed by
loading +the four data bits into the
least significant four bits of the
operand reaegister, which is then used
as the the instruction's operand. All
instructions except the prefix
instructions end by clearing the
gperand register, ready for the next
instruction.

Function Data

Operand Register

The ‘'prefix' instruction loads
its four data bits into the operand
register, and then shifts the operand
register up four placas. The
'‘negative prefix’ instruetion is
similar, except that it complements
the operand register before shifting
it up. Consegquently operands can be
extended to any length wup +to the
length of the operand register by a
sequence of prefix instructions. 1In
particular, operands in the range
-256 to 255 can be represented using
one prefix instruction.

The use of prefix instructions
has certain beneficial consequences.
Firstly, they are decoded and
executed in the same way as every
other instruction, which simplifies
and speeds instruction decoding.
Secondly, they gimplify language
compilation, by providing a
completely uniform way of allowing
any instruction to take an operand of
any sigze. Thirdly, they allow
operands to be represented in a form
independent of thea processor
wordlength.

4.2.3 Indirect functions

The remaining function code,
'operate', oauses its operand to be
interpreted as an operation on the
values held in the evaluation stack.
This allows up to 16 such operations
to be encoded in a single byte
instruction. However, the prafix
instructions can be used to extend
the operand of an 'operate’
instruction Jjust like any other. The
instruction representation therafore
provides for an indefinite number of
operations.

The enceding of the indirect
functions is chosen so that the most
fraguently occuring operations are
represanted without the uwse of a
prefix instruction. These include
arithmetic, 1logical and comparison
oparations such as

add
exclusive or
greater than

Less frequently ooouring
oparations Thave encodings which
regquire a single prefix operation
(the transputer instruction set is
not large enough to require more than
512 pperations to be encodedl).

4.2.4 Efficiency of Encoding

Measurements show that about BE%
of executed instructions are encoded
in a singla byvte {(ie withouvt the use
of prefix instructions). Many of
these instructions, such as 'load
constant' and 'add’ reguire just one
PECCESSOL cycle .

The instruction representation
gives a mora compact representation

.of high level language programs than

more conventional instruction sets.
Since a program reguires less store
to represent it, less of the memory
bandwidth is taken up with fetching
instructions. Furthermore, as memory
is word accessed the processor will
receive saveral instructions for
avary fetch.

Short instructions alse improve
the effactivenass of instruction
prefetch, which in turn improves
processor performance. Thera is an
extra word of prefetch buffer so that
the processor rarely has to wait for
an instruction fatch before

proceeding. Since the buffer is
short, there is little time penalty
when a jump instruction causes the
buffer contents to be discarded.

4.3 Support for Concurrancy

The processor provides efficient
support for the occam model of
concurrency and communication. It has
& microcoded scheduler which enables
any number of concurrant processes to
be executed together, sharing the
processor time. This removes the need
for a software kernel. The processor
does not nesd to support the dynamic
allocation of storage as the occam
compiler 3is able to perform the
allocation of space +to concurrent
procasses.

At any time, a concurrent process
may be

active = being executed
- on a list awaiting
execution

inactive -~ ready to input
= ready to output

- waiting until a

specified time

The active processes walting to
be executed are held on a list. This
is a linked list of procass
workspaces, implemented wusing two
registers, one of which points to the
first process on the list, the other
ko the last. -

In this illustration, g is
executing, and P, Q0 and R are active,
awaiting execution.

REGISTERS LOCALS PROGRRM
P
Back
n —
A
R
) N
c
g
Workspace -——-n_
Next Inst
Operand I

537

A process is executed until it is
unable te proceed because it is
waiting to input or cutput, or
waiting for the timer. Whenever a
process is unable to proceesd, its
instruction pointer is saved in its
workspaca and the next process is
taken £rom the list. Actual process
switch timas are very small as little
state needs to be saved; it is not
necessary +to save the evaluation
stack on rescheduling.

The processor provides a number
of special coperations to support the
process model. These include

start process
end process

When a parallel construct is
executed, 'start process'
instructions are used to oreate the
necessary concurrent processes. b
'start process’' instruction creates a
new process by adding a new workspace
to the énd of the scheduling 1list,
anabling the new concurrent process
to be executed together with the ones
already being executed.

The ecorrect termination of a
parallel construct is assured by use
of the 'end process' instruction.
This wuses a workspace location as a
counter of the components of the
parallel oconstruct which have still
to terminate. When the components
have all terminated, +the counter
reaches zerce, and a specified process
can then procesd.

4.4 Communications

Communication between processes
is achieved by means of channels.
Oocam communication is
point-to-point, synchronised and
unbuffered. As a result, a channel
naeds no message gueues, no process
queue and no message buffer.

A channel between two processes
executing on the same transputer is
implemented by a single word in
memary; a channel between processes
executing on different transputers is
implemeted by point-to-point links.
The processor provides a number of
operations to support message
passing, the most important being

input message
output messade

538

The 'input message' and ‘output
measage’ instructions use the address
of the channel to determine whether
the channel is internal or external.
This means that the same instruction
sagquencse can be used for both hard
and soft channels, allowing a process
to be written and compiled without
knowledge of where its channels are
connected.

As in the oCcam model ,
communication takes place when both
the inputting and outputting
procaessas are ready. Conseguently,
the process which f£irst becomes ready
mugt wait until +the second one is
algo ready.

A process performs an input or
output by loading the evaluation
stack with a pointer +to a message,
the address of a channel, and a count
of the numbar of bytes to be
transferred, and then exaguting an
"input massage’ ar an 'output
message' instruction.

4.4.1 Internal Channel Communication

At any time, an internal channel
{a word in memory) either holds
identity of a process, or holds the
spacial wvalue 'empty’'. The channel is
initialised to 'empty' before it is
used. When z message is passed using
the channel, the identity of the
first process to become ready is
stored in the channel, and the
processor starts to execute the next
process from the scheduling 1list.
When the second process to use the
channel becomes ready, the message 1s
copied, the waiting process is added
te the scheduling list, and the
channel reset +to its initial state.
It dees not matter whether the
inputting or the outputting process
bacomes ready first.

In the follewing illustration, a
process P is about to execute an
output instruction on an ' empty’
channel C. The evaluation stack holds
a pointer to a message, the address
of channel €, and a count of the
number of bytes in the message.

P c
REGISTERS
A: Count
Br Channel —4;1:1;?
C: Pointer

After executing the instruction,
the channel C Tholds the address of
the workapace of P, and the address
af the message to be transerred is
stored in the workspace of P. P is
descheduled, and the processor starts
to execute the next procesa from the
scheduling list.

P c

WORKSPACE

|
Hext Inast k—- P

Pointer

The channel C€ and process P
remain in this state until a second
process, o gxecutes an input
ingktruction on the channel.

P c Q

WORKSPACE REGISTERS

Hext Inst P k\ A: Count
Pointer B: Channel

C: Pointer

The message is copied; the
waiting process P is added to the
gchaeduling list, and the channel C
reset to its indtial 'empty' state.

P c
WORKSPACE
Hext Inst Empty
— List g

4.4.2 External Channel Communication"

When a message is passed wvia an
external channel the processar
delegates to an antonomous link
interface the job of transferring the
message and deschedules the process.
When the message has been transferred
the link interface causes the
processor to reschedule the waiting
process. This allows the processor to
continue the execution of other
processes whilst the external message
transfer is taking place.

Bach link interface uses three
registers

a pointer to a process workspace
a pointer to a message
a count of bytes in the massage

In the following illustration,
Processes o and 0 executed by
different transputers communicate
using a channel C implemented by a
link connecting the two transputers.
P outputs, and Q inputs.

539

P [a
REGISTERS REGISTERS
Count Count
Channel Channel
Pointer) Pointer

LINK

When P exacutes its output
ingtruction, +the registers -in the
link interface of the transputer
executing P are initialiged, and P is
descehduled. Similarly, when Q
executes its input instruction, the
ragisters in the link interface of
the transputer executing o are
initialised, and Q is descheduled.

P c Q
WORKSPACE WORKSPACE
Hext Inst Next Ins

P Q
Pointer -GP"M:""— Pointer
Count Count

LINK

540

The message is now copied through
the link, after which the workspaces
of P and O ara returned to the
corresponding scheduling lists. The
protocol used on the link ensures
that it does not matter which of P
and ¢ first becomes ready.

B Q
WORKSPAOE WORKSPACE
Haext Inat HNext Inst

List 4 List

4,4.3 Alternative and Timer

The occam alternative construct
enables a process to wait for input
from any one of a number of channels,
or until a specific time occeurs. This
requires special instructions, as the
normal 'input*® ingtruction
daschedul es a process until a
gspecific channel becomes ready. The
instructions used are:

enable timer
disable timer

enable channel
disable channal
alternative wait

The alternative is implemanted by
'enabling' the channel input or timer
input specified in each of its
components . The 'alternative wait' is
then used to deschedule the process
until one of the channel or timer
inputs becomes ready, whereupon the
process is scheduled again. The
channel and +timer inputs are then
'disabled’. The '‘disable’
instructions are also designed to
selact the componeant of the
alternative to be executed.

4.5% Inter-transputer Links

A link between two transputers
provides a pair of occam channels,
one in each direction. A link between
two transputers is implemented Ty
connecting a link interface on one
transputer to a link interface on the
other tramnsputer by two
one=directional signal lines. Each
szignal line carries data and control
information.

Communication through a link
involves a simple protocol, which

provides the gynchronised
communication of occam. The use of a
protocol - providing for the

transmission of an arbitrary segquence
of bytes allows transputers of
different wordlength to be connected.

Each message is transmitted as a
seguence of single byte
communications, requiring only the
presence of a single byte buffer in
the recsiving transputer +o ensure
that ne information is lost. Each
byte is transmitted as a start bit
followed by & one bit followed by the
eight data bits followed by a atop
bit. After transmitting a data byte,
the sender waite until an acknowledge
is received: this conesists of a start
bit followed by a zero bit. The
acknowledge signifies Dboth that a
process was able to receive the
acknowl edged byta, and that the
receiving link is able to receive
another byte. The sending link
reschedules the sending process only
after the acknowledge for the final
byte of tha message has baen
received.

1 1 Data g

Data byte

hocknowledge

Data bytes and acknowledges are
multiplexed down each signal line. An
acknowledge is tranasmitted as soon as
reception of a data byte starts (if
thaere is room to buffer ancther one).
Conseguently transmission may be
continuous, with no delays betwean

data bytes.

5 SUMMARY

Experience with occam has shown
that many applications naturally
decompose into a large number of
faily =s=imple processes. Once an
application has been described in
ooccam, a variety of implementations
are possible. In particular, the use
of occcam together with the transputer
anables the designer to exploit the
peformance and economics of VLEI
technnolgy. The concurrent processing
features of occam can be efficiently
implemented by a small, simple and
fast processor.

The transputer therefore has two
important uses. Firstly it provides a
new system ‘buoilding block' which
enables occam to be used as a design
formalism. In this role, cccam serves
both as a system description language
and a programming language. Secondly,
oocam and the transputer can be used
for prototyping highly concurrent
systems in which the indiwidual
processes are ultimately intended to
be implemented by dedicated hardware.

REFERENCES

Inmos, Oooan Programming Manual
(Prentice-Hall International, London,
1984)

Barron, I.M. et al. The Transputer,
Electronics, 17 Movember 1983, p 14d9

541

