PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1984,
edited by ICOT. © 1C0T, 1984

EM-3: A LISP-BASED DATA-DRIVEN MACHINE

L3 %

Toshinori YAMAGUCHI, Henji TODA, Jayanta HERATH, Toshitsugu YUBA

* Electrotechnical Laboratory
1-1-4, Umesono, Sakuramura, Niiharigun

Ibaraki 305, JAPAN

B Feio Univeraity

3-14=1, Hiyoshi, Yokohama 223, JAPAN

ABSTRACT

In this paper, & Lisp-based data—driven
machine with a nevel parallel control
mechanism and its hardware probotype are
presented, The proposed control mechanism is
a8 natural extension of the data-driven scheme
to the function evaluation and is achieved by
packet communicabion architecture,

Firat, the control meschanism of the ETL
data-driven machine-3 (EM-3) iz overviewed,

Hext, the architesture of itz hardware
prototype iz described. The hardware
prototype designed accommod akes elght

processing elements which are connected via a
communication network. Each processing
element consists of a microprocessor and
special hardware. The network is organized
by several L3I router chips. Then the
instruction set of the protetype and the
design philosophy of a functional prograssing
language for the data-driven machine are
presented, Finally, the performance
characteristics of the machine obtained by
the software simulater are svaluated.

1., INTRODUCTION

For the next generation computers, a non
von Neumann oomputer architecture and new
software environments must be developed. The
new computer architecturs must be based on
parallel processing and VL3I technology.
Data-driven architecture is proposed as a new

computation model [2,4). Tt has parallel
precessing potential in both hardware and
software; 1i.e,, the maximum inherent

parallelism in ordinary programs can be
exploited at the architectural level of the
coaputers. In this case, it is not necessary
to specify parallel deseription of a program
explicitly, Moreover, functional programming
and Logle programming styles are suitable for
data-driven architectura,

The ETL data-driven machine-3 {(EM-3) is
a Lisp-based data-driven machine for

non-numerical computations such a3 symbolic
manipulations dnvolved in knowledge based

information processing systems. The primary
goal of the EM=3 project {18 to study the
feasibility of the practical data-driven

machine for zymbol manipulations., In recent
¥earzs, there have been szome abtempta to
construot new machines with data-driven
architecture, However they have shown the
potential of the data-driven architecture
only in prineiple, since thoze machines are
too small in scale to execute large programs.

The BM=3 aims at bringing out the
intrinsie parallelism in ordinary programs
which are written in EMLISP [15]. a
funetional programming Llanguage. We have
propofed an advanced control mechanism for
the EM-3 using novel concepts such as
paeudo-result, semi-result [16] and
partial-result [13]. It has been proved that
thege notions cause new parallelism and
accelerate program execution, We have
advanoed the data-driven concept to meet the
challenge of producing the next generation
aomputers .,

The features of the EM-3 prototype ara

as follows:

(1) Multi-microprocessor implementation,

(2) Attached special hardware for the packet
HEmary .,

{3} Four by four
gate-array LSI.
(4) Advanced control mechanism for
evaluation.

(5) Distributed list structure.

{6) Lisp-like data-driven language.

router gell fabricated by

funetion

In this paper, the new control feature
adopted in the EM-3 i3 first deseribed
briefly. Hext, the hardware organization of
the EM-3 prototype, Instruction set and
format of the communication packets used are
deseribed., Then the Lisp-like data-driven
language, EMLISP, 13 outlinad, Finzlly, a
performance evalustion of the EM-3 protobype
using the software simulater is presented.

2. Control mechanism of the EM-3
2.1 Pseudo-results and semi-results

Ed-3 i3 a multiprocessing system with a
number of identical processing elements (PEsz)
in which each PE is connected wvia a packet
pommunication network. Figure 1 shows the
funetional organization of an EM-3 processing
elemant. The functions of the sectionas are
descoribed in L[12]. Each asction of a PE
processes received packets and sends the
processed packets to the designated sections,

The function evaluation mechanlsam of the
EM-3 belongs to the clasa of "full
substitution® [10] for recursive programs.
It can be observed that eager evaluaktion
[3,5] and incomplete objects [11] belong to a
similar elass of computation., The difference
iz that our approach 1s a natural extension
of the data=driven scheme to functlom
evaluation, whereas the latter two approaches
are based on the reduction zcheme.

In order to achieve eager evaluation on
the base of a data-driven scheme, the concept
af a "pseudo-result® [12,16] is introduced,
In the control mechanism of the EM-3,
funotion executlon causes the generation of a
pssudo-result. The paseudo-result can invoke
octher operations and/or defined functions as
the actual=result does. When and only when
all argument wvaluss for a defined funotion
bacocme availsble, a pseudo-result is
generated as the virtual result of the
funetion execution,

Advanced oontrol and pipelining are
carried out using the oonocapt of
pseudo-results which increase the concurrency
in multiprocessing environments. The
proposed pseudo-result scheme relaxes the
firing conditions of the data-driven Scheme,
znd therefore the evaluation of a function is
advanced, and the operations contained in the
function can be executed concurrently with
the evaluation of its successor, This allows
a oertain degree of overlapping of
gomputation.

The lemient con3 mechanism [1,9] can be
implemented easily using this pseudo-result
scheme, The sub structure obtained by
executing @ cons operation may inelude a
pseudo-result, and this sub structure iz a
ngami-rasult”, A cons operation accepta any
sombination of actual-result, semi-result and
pseudo-result as its input, and generates =a
semi-result, & semi-result ean fire
pperations and/or functions. When applying
car/odr operations for a ssmi-result, the
output, which is not necessarily an
astual-result, is cbtained immediately. This
allows advanced computation.

513

[I

|-H.|\'I"BHIH= SECTION]

[ssomes secTIoN |

+
{ pre-mxEcuTion secTron | | pevocarzonsexrt secTron [

Fig., 1 Functional organization of a PE

2.2 Partial-result

The pseudo-result which is dntroduced in
the control mechanism of the EM-3 oan be
regarded as a data type in the data=driven
scheme . fn operation manipulatas a
paaudo-result as an actual data. If an
operation generates a new data type
containing a p2eudo-result, then all
operations can evaluate it more eagerly.
This new data type has an incomplete
structure which resembles an intermediate
form of the reduction mechanism. This
incomplete struecture i1s a "partial-result".
In the reduction mechanism, the reduced form
i3 reyritten by a new form until no rewriting
oan be applied, whereaz in the partial-result
mechaniss, the partial-resvlt can be
manipulated freely. Therefore, if a
partial-result contains any pseudo-result and
if the wvalue of this pseudo-result is a
partial-result, it is possible te replace the
old partial-result by a new partisl-result,
This proocess reaemblea the procesa of
reductlion . In the reduction mechanism,
decomposition is invoked by a request, bub in
the partisl-result mechanism, decomposition
and evaluation are invoked concurrently.

Partial results are introduced here to
evaluate add operation and/or multiply
operation sagerly. Because the add operation
and multiply operaticn hold the commutative
law, we oan caleulate a series of add
operation and/or multiply operations in any
sequence,

526

The format of a partial result is assumed
a3 follows.
{op, number-part, pseudo-result)

Here the op i3 + or *, which represents
the operation for a partial caleulation. The
number-part represents the defined part of
partial-result. The pseudo-result represents
the undefined part of the partial-results
which is designated as the wvalue of the
pseudo-result. For example, when an add
cperation i3 fired by the arrival of number 5
and pseudo-result #1, the output of the add
aperation will be a partial-result
represanted as (+, 5, #1).

We show the ealeulation of the
partizl-results by using an example. If the
result of some functien F is {+, 5, #1)}, a
partial-result, and if the wvalue of the
pseudo-result part, #1 in this
partial-result, 1s (4, 3, #2), another
partial-result, then the mnew partial result
of F ia obtained by replacing #1, the
pseudo-result part of the old partial-result,
by (+, 3, #2). Then the present value of F
iz {+, 5, (4, 3, #23) = (4, B, #2), 8 new
partial result, This replacement i3 carried
out concurrently with the decomposzition and
generation of partial-results in the EM=3.

To execube partial caleulation
efficiently, two Eypes of packets are
introduced. One 1s a "regquest packet" which
requests a further reduced form of a
pseudeo-result, and the other i3 a "reply
packat™ which gives the reply to the reguest
packet . TIf the wvalue of a reply packet i3 a

partial-result, a new reguest packet for
anather pssudo-result,to replace the partial
reault, i3 generated, When the value of a
reply packet 1s not a partial-result, the
reduction prosess stops and substitutes the
actual=result as the value.

factorial(l) = #0
#0O (*,4,#1) —-—=> REQUEST for #1
{==== REPLY #1 = (%, 3,42}
#0 (#,12,82) -—==3% REQUEST for #2
{=--- REPLY #2 = (%,2,#3)
#0 = (®,204,#3) --——> REQUEST for #3
(==== REPLY #3 = (® 1. gd)
[[s] (*,24,#4) —==-=3 REQUEST for #4
f=-== REPLY #4 =1

W Wl Y [——]

ha
=

#0

Fig., 2 Example -- partial-result saleulation

Figurs 2 illustrates the partial
cgleulation of the recursively defined
factorfal function. It shows the computation
process of the partisl caleulation, i.e., how
the partial result is replaced and how the
request or reply packet is sent or received,
Hote that the desomposition of the funotion
invocaticon and the arithmetic operations are
executed concurrently.

3. ORGANIZATION OF THE EM-3 PROTOTYPE
3.1 The structure of the EM-3 prototype

Tne purpose of the EM-3 prototype is

{1} To eonfirm the effectiveness of the EM-3
control mechanism.

(2) To measure different kinds of overheads
to realize the data-driven mashine,

{3) To evaluate the performance of a2 resl
data-driven machine by executing practiecal
programs which cannot be exescuted on the
software simulator.

Figure 3 shows the organization of the
EM-3 prototype. The prototype consiats of
elght PEs, each of which is connected via a
router nebwork. A PE corresponds to the
MEB000 16-bit microprocessor with special
hardware. The functions of a PE of the
prototype are logisally identical to thoas of
the EM-3 which iz shown in Figure 1. In the
EM-3 prototype all PEs process packets in
parallel, and each PE proceasas packets
sequentially, because the function evaluation
mechanism 1s realized by a coentrol program in
the microprecessor, The control program of
the prototype L3 written in the C language.

HOST COMPUTER el
{ror 11744
RE 1 i
ROUTER

— i METWORK
COMTROL PROCESSOR| | 1

:

1
] [

Flg. 3 Block diagram -- EM-3 prototype

There i3 no locality in the network.
The communlcation packets pass from one PE to
another PE vla the nebtwork. ©Each PE is
connected ‘4o the control proceasor via a
16-bit parallel interface. The control
proceasor loads the wuser program from the
host computer to all PEs, controls the status
of each PE by wusing interruption and also
controls the I/0 functions.

The host compuber, PDP-11/84, i3 used
for software developments and file
management, It ineludes the C compiler and
the eroas © oompiler for the MGROOD
microprocessor. The control program af the
prototype is debugged cn the host computer,

Figure 4 shows the photograph of the
M=3 hardware prototype. This showa the
control processor (top shelf) four PEs (each
shelf ocontains two PEs), router network,
another four PEs from top to botbtom
respectively. Each PE is composed of four
23cm * 25 om tboards. Router nebwork is
eomposed of a 35¢m * U0em board. Each PE is
connected to & router network port and te the
control processor by flak cables.

3.2 Organization of the PE

The organization of & PE i3 shown in
Figure 5. The M58000 microprocessor is the
main processzor of a PE. The 1/0 interface

sonnects the PE to the control processor,
The packet memory control wunit is the
interface to the router network. Each unit
1= connected by the MGE00) common bua.

Data-driven control of the EM-3
prototype is based on packet communication
and packet processing. We focused our
attention on the network and packet manager,
The deaign issues of the hardware arei

{1) The communication cost of a packet must
be cheaper than the cost of prosessing 1t.

Fig. 8 System hardware — EM-3 prototype

527

The packet length i3 rather long (maximum 224
bite) and the btotal packet length i3 divided
inte packet segments in the router network,
Each packet is 15 bits long. Therefore the
maximum number of packet segments is 4. On
average the router network can transfer a
packet withim 2 mioro seconds. This 1is
shorter than the packet processing time. The
router network is desoribed in ssction 8.

{2} The processing overhead for managing the
packets must be reduced. The abtached
hardware, packet memories and ibs contrel
unit are deaigned for this purpose.

COMMON SU5

PACKET WEBOOO

HEMORY P

EONTREL EOARE .
FRIT

1

RAUTER CGHTROL
HETWORE PROCESSAR

Fig. 5 Organization of a PE

HEI0ED MERDOR
wdirenr -hun o b= b

BIT-5LIEL

I SHIFTER E i:lrl.'l'"Ll-ll]

L4
il

MIDRESE RERISTOE

NPT mreas

FAGRET MEuagr FiEe Fire

HEMORT WEMEET

ROUTER NETHOAK

Fig. 6 Block diagram —- FMCU

528

Figure & shows the block dizgram of the
packet memary control unit (PHCU), This unit
gontaing high speed memories to store
communication packets. The memery size is
128 kbybes. This memory is divided into UD96
fields, so the length of each field is 256
bits. The packet memory organization 1is
shown in the Figure 7. The first 16 bits of
each field are ussd to implement a hash table
for the matoching memory. The next 16 bits
are used to link the hash conflicts, link the
free list of packets or link the input/output
packet queue to packet communication network.
The remaining 224 are bits used to store the
body of the packets, Since thess memories
are allocated in the address space of the
MEB000 central processor, Ghe processor and
FMCO can read the information available in
the packets or store any data to the packebs.
The MGA000 and the PMCU run independently and
concurrently. Hence it iz possible for bokth
unita to agcess the packet memory
simultanesusly. In this case, prefersnce is
given %o the MHO6A00D accesses. FMEU ean
perform bit manipulation and gimple
arithmetic operations in the fields of a
packet .

FMCU oonsist of twe FIFO queues, &
bit=zlice microprogrammed microprocessor, an
address register, a shifter and a multiplier.
Input FIFO memory and output FIFO memory ara
used as an interface to the router network.
A packet arrived from the router network is
stored automatically in the input FIFO
memory. A packet stored in the output FIFO
memory is sent putomatically ®o the router
network. The microprogrammed processor can
execute arithmetic or logleal operations for
the segmented fields of a packet. Tha
shifter is used for field extraction and the
multiplier i3 wused to ocaloulate the hash
addresses, These functions are wuseful to
reduge the overhead to process the matehing
functlon of the packets. The commands for
FHCU are embedded in the address space of the
main processar,

The PHMCU reads the packet segments
gsequentially from bop of the packet queus and
stores them in the packet memory while
associatively searching the set of packets

15 bits 16 bits 224 bits
L] | |
=
. hash |miscellanious | packet body
f enkry | Link |
BOSE | f I

Fig. T Packet memory

using hashing algorithms, Free space in the
packet memory is managed by a free list
pointer. Facket memories are scoessible from
bath the main processor and PMCU. Hence, the
main processor can read the required data
from a packet in Ghe memories, execute them
and then write the result into the packet.
In the main processer, a packek is
represented by a pointer to the packet memory
address in the PMCU where the packet
management i3 oarried ouk. Hence, there is
no packet movement overhead in the PE.

It is eaay to add new fumetional units
to a PE of the EM-3 probotype by simply
connecting the necessary add-on harduwars to
the commen bus, For example, a neW
peeudo-result control wnit will be suitable
for the extension of functionmal units of the
PE.

PMCU 18 constructed by using sbout 170
M3I chips on two boards. The length of the
microprogram whioch controls the bit-slice
processor is 64 bits long and its format is
almost horizontal.

3.3 Organization of the nebwork

The router network was adopted as the
cosmunication network eof the EM-3, The
packet communiocation network is organized as
& router cell network, A& apecial LSI chip
was designed for this purpose. The router
2ell network is a multi stage interconnection
network which cgnsists of router cell LSIs,
The router cell L3I has been designed as a
general purpose element in the ecommunication
network.

The router oell LSI is 3 store and
forward matrix switeh with four input and
four output ports. There are two buffers in
@ach port to tranafer serlies of data segments
successively,

The specifications of %he router cell
chip are as followa.

(1) The router communication chip dees not
have a controller in it because of the pin
limitatlien. This gives a generalized router
network. A speclal controller can be
designed for special applications, or the
game chip can be added to the general router
network to achieve the control feature.

{2} Each port of the router chip sends or
receives messages by four parallel bits, Any
number of router cells, in four bit
inerements, can be inberconnected to form the
network.

{3) The econfliet of multi port destined to a
3ingle port 13 treated by a priority
mechanism, The priority given to each port
changes according to a round robin rule.

{4} The whole router network syatem acts in
a synchronoud fashion. A central clock is
supplied +to all router chips and data
transfera from chip to chip are execubed
during a single cloek period.

(5) Packets are tranaferred through the
router in pipeline fashilon. A long packet is
divided into packet segments and transferred
as a sequence of pasket segments. The end of
the packet is designated by a special signal
EOP.

(&) This L3I ehip is composesd of BI-CMOS
gate array technology wsing 1357 gates. It
can tranafer one packet segment every 150
nano seconds.

Tne interconmection between the router
cells is a modificatlion of the delta network,
The shuffle exchange network with eight iaput
and eight output ports can comprise of two
stages of four by four network oells with
redundant half ports. In the implementation
of the EM-3 prototype, these redundant ports
are connected to implement redundant paths.

Figure 8§ shows the layout for the
interconnection of eight input and eight
output nebwory using two four by four router
L3I chips. In the EM-3 protobype, 16
parallel bits can be dealt with wsing four
router cells together.

portl _}—' | __ peril
pert2 | 4bByn I Aoy ou peTEd
partd | router I rouker | persd
partd | I '__ pores
[| P |
pertd T 1 g—'—_ porty
pareh ,_.__E S hy & P Bhy s | porth
pertT __.I router I soubar | part?
portl _! i __ partd

Fig. 8 FRouber network interesnnection

529

Table 1 Format -~ EMIL code

{epooda constantc desc-1ise)
{gall functisnnsse no-of-arg no—of—ret dast-list)
{proe functionname no-of-arg dest-list)

wWheres
constant :: = {C-0 p) | (C-1 m)
dest=11st :: = [destination})®

dastination ::= [label | MIL | port-no |
| CONTROL | DATA }{{ARG u v |
{RETIAN no-of-ret} 1)
label 1= sbrimg

no-of-arg 1= integer no—of-ret 1= Iinteger
n 1:= integer u 2= integer
w :w Integer port-no ::% Iinteger

4. INSTRUCTION SET

Tha EM-3 inatruction sat hazs a
one=to=-one correspondence with Lthe
intermediate language, EMIL code, used to
rapresent data=driven grapha. Table 1 shows
the format of the EMIL code. Each operation
or function-name in the EMIL code represents
a node of a data-driven graph and the
dest-list represents the ares of the graph.
The set of data-driven operations are
conpased of Ligp-like primitives and a number
of new operations sapecially constructed for
the EM-3. The exsmples of the former
operations are car, odr, cons, atom, equal,
plus, times, ete, Examples of the latter are
the *distribute operation which distributea
the input data te the corresponding nodes,
the M¥suyiteh operation which controls one
input by the other dinput, and the ®constant
oparation which always gives the constant
data., When an operand of a operation Lz a
constant datum, it is possible %o place that
oconstant datum in the constant field of the
operation, Tne destination field consists of
two sub fields. The label fisld represenkts
the destination node name, and the other sub
field represents the attribute of the neoda,
For example, port-no represents the input
port number of the operation where the
operand is destingted and u in (arg u)
represent the argument number, in Eotal of v
arguments, of the functlon ecalled, The
instruction proc apecifies the name of the
funetien, the total number of arguments and
the destination of each argument.

The EM-3 instructionz are loaded to the
instruction memory of all PEs by the loader.
There 13 no instruction feteh confliet
because all PEs have a copy of the
instructions

530

5. PACKETS

A packet carries data or messages from
one PE to another PE. The length of a packet
varies with the packet type. There are six
packet bypea used in the EM-3, the result
pasket , entrust packet, request packet, reply
packet, incref packet and decref packet. The
result packet carrles data from cne operation
to the othar operation and henoce i3 used
frequently in the data-driven environment, A&
result packet i3 96 bits long: its format is
shown in Flgure 9. PE# represents the number

of the destination PE. The PE# fleld is used
by the router network to send a packet to the
destined PE. TYPE represents the packet type
number., These twp fielda are common to all
packet Cypes,

PESEUDO# iz used to represent the
anviromment in which the packet is generated.
HWODE# represents the noda number of the
data-driven graph for which the packet is
destined. PORT represents the port number
and WAIT# shows the number of inputs that can
be accepted by a destination .nede. The
OP-TAG represents miscellanesus information
about the destination node, [3929 the
destined node 18 a eall instrustien. The
CELL field is composed of an elght bit tag
field and 28 bit datm. In the router
natwork, a result packet is divided into aix
16 bit segments.

The usage of the ontrust, request and
reply packets are mentioned above and have
different packet formats., The packet lengths
are 128, 48 and §0 bita respectively. The
inoref packet(B8 bit long) and decref packet
(32 bit long) are used for collecting pseudo
table and heap garbage using the reference
count scheme for storage management.

G. LISP-LIKE DATA-DRIVEN LANGUAGE

811 EM-3 user programs EM-3 are written
in the Lisp=like data-driven language,
EMLISP. EMLISP i3 a high level programming
language based on Lisp speclally deaigned for
data-driven computations. Parallel
evaluation of an EMLISP program i3 based on
the parallel execution of the srgumenta im a
funotion and is drawn naburally when an
EMLISP program 1is translated inte a
data-driven graph. The 8yntax and baaic
functions of EMLISP are similar to those of
Lisp. Programs represented by S-expressions
must be translated into the data driven
graphs easily.

The design prineiples of the EMLISP are
as follows:
{1) Pure functionality and the aingle
asalgnment rule are adopted.
(2) Global and free variables are Inhibited,

Ta!‘nle 2 Special features —- EMLISP

[Eliminated Functions]

T Telativas of prog: PROG, PROGZ, PROGH - T
| Flow of sontrol: GO, Do

| Relatives of array: ARRAY, STORE, ...

1
| Modifying list: RELACA, RPLACD, WOONC, ... I
] |

[appended Futetiona]

nlut:h::h:g: BLACK
| Paraliel conds: POOND
I =

{3} The functions replacing the existing
list structure are inhibited.
(4) Loop constructs are Lnhibited.

Table 2 shows the flunctions which are
deleted from and added bs the eonventlional
Lisp language. The new feature "blook™ 1s
introduced to BEMLISP to bring a procedural
programning style such as "prog" in Liap.
Bound variables must be defined flrat in the
block, whereas S-expressions can be written
in any order. The linkages between
S-axprassions in the block are defind by the
dependencies of the varliablea 1n the
S.gxpreasions. The single assignment rule
must be followed in the bleck atrusturs. The
"poonrd® structure is inktrodused to bring the

guarded ooemand feature. In the poond
structure, the propositional expreasions are
eval uated conaurrently, than thie

corresponding forms are evaluated when the
value of the conditional expressicna are
troe. If the conditions are mutually
exclusive, there is no need to exeoute the
single assigoment rule between the forms,

T. FPERFORMANCE EVALUATION
BY A4 SOFTWARE SIMULATOR

The performance of the EM-3 prototype Is
evaluated uslng o software sSimulator. The
aoftware slmulator simulates the program
behavior faithfully. In the EM-3 prototype,
the functions of a FE are logically identical
to those of the EM-3, bubt the input packets
are processed sequentially. The simulation
parameters assumed for this simulation are
the same as those givem in [12]. A router
network is used for communication.

The following benchmark prograas are

execubed in thiz aimulatlon study:

1} q{n): The parallel version of the n
queen problem givimg all possible solutions.

2) gs(n): The OQuicksort giving O(n)
parallelism with a given n data.

3) fib{n): The Fibonasol function giving
binary tree parallelism.

Fibanaooi agntains only numerical
somputations. ALl other benchmark programs
executed contain numericsl and non numerical
computations. The exeaukblon times required
to execute above benchmark progrems in the
EM-3 prototype simulater are measured by
varying the number of PEs =and plotted in
Figure 10.

The ideal data-driven parallelism is
obtained by modifying the EM-3 protobype
software simulator. All result packets Ghat
can be executed simultanecusly are counted
before the execution, This gives the number
of concurrent operations. It is assumed that
the execution time i3 the same for all
operations and an unlimited number of
conourrent oparations can be executed in one
time step. Figure 11 shows the ideal
data-driven parallelism wvariation over the
time measured for above benchmark programs.
Here the horizontal axls represents the Gtime
and the vertiecal axis represents the 1deal
data-driyen parallelism, The data on the
vertical axis is plotted by log scale based
on 2. These figures show that tha EH-3
prototype extract the concurrency embedded in
the programs.

. CONCLUSION

Qur goal is to construct a protobype of
a Lisp-based data-driven machine to execute
more prastical data-drivem programs and
simulate a data-driven machine architecture
with a large number of PEs,

In [12] we Thave already shown the
effectiveness of the control mechanism of the
EM-3 for non-numerical ecomputations., The
-3 prototype will confirm thiz at a more
practical level. Thare are masy isaues to be
solved on data-driven architecture. We will
continue owr studies on those isswes in a
real envlronment .

The first wversion of the PE econtrol
program was implemented. It was written in
the C language and compiled to the EM-3
prototype using a eross compller. Few bench
mark programs are eiecuted on the EM-3
prototype, All software tools except the
mioro program and the environmemt of the C
language are coded in the C language. We are
planning to evaluate and improve the
grohitecture of the protobype by executing a
number of benchmark and application programs.
We believe that many ideas for data=driven
arghitecture should be tried out on the

prototype and be tested by measuring and
evaluating the performance of the prototype.

531

{x10000)

e L a : g4}

z 8 ,

= a : fib{13)

o 6F = = O3 (40)

Z R

2 ol

i

L)

2 2}
o | 1 1 i
1 2 4 g 18 3z

PEs

Fig. 10 Simulation results

eI TRled USARIP-EIE]

G R R S R

EEITAIIRARd UsAflp-Rie

fib{13)

EITERERtEd USapip-dimi

1 slefdl BT
WiHH: 11
i

H B
1 111
Emre

HEH

(EIEER P

Tise

Fig. 11 Ideal data-driven parsllelism
variations over time

532

ACKMOWLEDGEMENT
We would like to thank Dr. Hirashi
Kashiwagi, Director General of Computer
Systems Division, for providing the

opportunity for the present study, and to the
staff of Computer Architecture Section for
their fruitful diseussions,

[11

21

[3]

4]

(51

[&]

irl

fal

[al

£10]

[11]

[12] Yamagueni, ¥.,

REFERENCES

Amamiya, M., R, Hasegawa, 0. Nakamura
and H. Mikami; A list-processing-oriented
dataflow machine arohitecture, AFIPS NCC,
143-151 {1982).

Arvind, V. Kathall and K. Pingali; &
data flow architeeture with tagged
tokens, TM-1T4, Lab. Comp. Sedi., MIT
(Sept. 1980).

Darlington, J., and WM. Reeve; ALICE: A
multi- procesasor reduction machine for
the parallel evalustion of applicative
languages, Proa. Funct. Prog. Lang.
and Comp. Arch,, 65=T6 {Oct. 1981},
Dennis, J.B., G.A., Boughton and C.E,
Leung; Building blocks for data flow
prototypes, Proec, Tth Ann. Symp.
Comp. Arch,, 1=3 (1981).

Grit, D.H. and ReL. Fage; Eager
evaluation of functional programs and a
supperting interconnection structure,
Froe. 3rd Int. Diat. Camp. Sys.,
811-816 (1982).

Gurd, J. and T. Watson; Data driven
system for high speed parallel computing
-= parti: Sbtructuring software for
parallel execution, Computer Design,
Vol.19, No.6, 91-100 (June 19803.

Gurd, J. and I. Watson; Data driven
system for high speed parallel compubing
== part2: Hardware design, Computer
Design, WVol.19, |Ho.7, &7=106 (July
1980) .
Herat, evaluation of a
data- driven machine uzing a software
simulator, Masters thesis, Univ. of
Electrocomnunications, (March 1984},
Keller, H.M., G. Lindatrom and 3.
Patil; A loosely-coupled applicative
multi-processing system, Proo. HEC,
613-622 {1979).
Manna, Z.:
Computation,
{1974},
Peterson, J.C., W.D. Hurray:
compuber architecture
funetional prograsming systems, Proo,
Int. Workshop High-level Lang. Comp .
Areh., 190-195 (May 1980).

K:Toda and T.Yuba; A
performance evaluation of a Lisp-based
data-driven machine (EM-3), Prooc. 10th
Ann, Aymp. Comp. Areh., 163 =369 (1983).

J.3 Performance

Hathematical
MoGraw=Hill, Haw

Theory of
York

Parallel
employing

(131

[14]

[151

[16]

Yamaguehi, ¥. and T. Yuba; A partial
calueulation for the numeariqal
operations on data-driven machine
EM-3, Proe., 2Tth Nat. Conv, IPS Japan,
TH-5 {(Cot. 1983), in Japanese.

Yamaguchi, ¥., K, Toda and T. Yuba: The
ETL data-driven machine EM-3: (13
Architecture, Proc, 26th Mat. Conv, IPS
Japan, GS¥-3 (Mar. 1983}, in Japanese,
Yuba, T., ¥. Yamaguchi and T. Shimada;

EMLISP: A Lisp-like 1lenguage for =&
data-driven machine and its intermediate
language, Proc. 284th Nat. Conv. IPS
Japan, TD=6 (Mar. 1982),in Japanese.
Yuba, T., ¥. Yamaguchi and T. Shimada:
A ocontrel mechanism of a Lisp-based
data-driven machine (EM-3), Inf. Proec.
Lett., Vol. 16, No. 3, 139-183 (1983).

