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ABSTRACT

Even though the systolic approach shows
great promise for realizing massive parallelism,.
it has been viewed so far only as a method
for designing special-purpose attached processors
for conventional computers. We claim that the
systolic approach has a much greater potemtial.
That it can lead to an algorithm design and pro-
gramming methodology for general purpose, seli-
contained, high-level language parallel comput-

Ers.

This paper proposes a framework for realiz-
ing this potcatial, termed systolic programming.
The framework comprises an abstract machine,
a programming language; a process-to-processor
mapping nokation, and an rithm develop-
ment and programming methodology.

An implementation of this framework vsing
availuble technology is currently under investiga~

tion.

1 PROLOGUE: A TRIBUTE TC OUR
FOREFATHERS' WISDOM

Socrates: I understand from your note that you
came to tell me about a parallel computer archi-
tecture you are thinking of. ..

Gera: Yes, il is a rectangular grid of. ..

Bocrates: .. .but before that, since I know so lit-
tle about this topie, could you tell me how to
evaluate your new idea?

Gera: 'Well, an important criteria for evaluat-
ing parallel architectures is scalability. It says
that for twice the money you should got twice
the computer. Or that the arehitecture should
remain leasible as the nomber of processors goes
to infinity.

Socrates: Why is thie eriteria important?

Gera: First, from an aesthetic point of view, a
sealable architecture iz more clegant and robust.
From a practical poiot of view, we would not
want to re-solve Lhe parallel processing problem
every two years alresh, when the number of pro--

cessing elements per-wafer doubles,

Socrates: Sounds reasonable. Are theresany im-
plications you can draw from this criteria? Prop-
erties that hold for any scalable parallel architec-
ture?

Gera: Yes. Non-uniform costs of communication
and memory reference. An architecture in which
every processor is “close”, in some natural sense,
to all other processors, is not scalable. For exam-
ple, cross-bar switches and their approximations.
are nol scalable. So in 2 sealable architecture
a processor would have “neighbors®, and “non-
neighbors”,

HSocrates: So it seems Lhat some pairs of proces-
sors will have a hard time talking to each other?

Gera: Yes, So [think that ensuring the locality of
communication is the critical problem of parallel
processing.

Socrates: Why? Are you sure that all these pro-
cessors will have so much to talk about! o't
they work most of the time on their own, and
only eccasionally communicate?

Gera: [ don’l think so. If you have a sealable ar-
chitecture, and try to exploit parallel processing
to its fullest, you end up breaking your prob-
lem into smaller and smaller subproblems. The
resulting algorithms involve a lot of communica-
tion.

Socrates: Aud I thought that the real CPU-killers
are number crunching programs, that, presum-
ably, involve a lot of computation, and very little

communication.

Gera: My stalement is true even of number-
erunching problems. Consider for example sye-
tolic algorithms. They scem to be the most
promising H;PEmach to highly-parallel numeric al-
gorithms. They show that, even for a compute--
bound problem, » highly paraliel algorithm in-
volves an awful lot of communication. If this is
true of compute-bound problems, it is even more
50 of communication-bound problems.

In other words, it seems that.a highly: parallel so-
Jution to any problem is communication-bound.



Socrates: You probably woulde't make these
statements without thinking you have some me-
thod for localizing communication. But [ heard
that the major problem of parallel processing is
load-balancing. And it seems that dynamic load-
balaneing and maintaining the locality of com-
munication don’t mesh very well, do they? I
mean, if you start moving processes around, it be-
comes diflicult to make sure that processes that
talk to each other stay near each other, right?
So your load-balancing algorithm must be pretty
smart, is it?

Gera: No.

Socrates: No? Oh, I see... You probably don't
want to do the analysis of who talks to whom
every time you spawn a process; you'd rather do
it once and for all at compile time. Make the
compiler map processes bo processors so that they
arc both evenly spread and perform only local
communications. So, a smart compiler, is that
what you've got!

Gera: No.

Socrates: Good. I see you've learned something
from me. It raises my bfmd-prmaure when some-
one tells me he has 2 “smart gadget” for solving a
problem that smells NP-hard miles away. Theory
agide, it scems that designing eflicient process-
structures for a parallel program is as difficult as
designing eflicient data-structures for a sequen-
tial program. And we don’t huve any “smart
gadgets” for the latler problem. Do we!

Gera: No, 1 dont know of any widely used ones.

Socrates: 1 am getting curious. What's the pi-
geon in your hat?

Gera: [ don’t have anitnexcapt for good old pro-
grammers and algorithm designers.

Socrates: 117

Gora: [ mean that if designing efficient process
structures for parallel programe and mapping
them effectively on the target architecture are
important and diflicult problems, then we have

to solve them. And we should have a way to tell

the computer what our solubion is. So we must
have a language for deseribing process structures,
and for deseribing how to map these structures
on our computer. I guess that’s the idea I wanted
to tell you zbout.

Socrates; Hinmm...

Qera: Congider this: you know the systolic band-
matrix multiplication algorithm of Kung and
Leiserson, do you?

Socrates: Yes. I think it's ingenious, even though
moving trausparencies around to define it in-
volves too much hand-waving {or my age.
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Gera: You would like to LmELlemant this a
rithm, or this kind of algerithms, on a parallel
general purpose computer, would you!

Socrates: Probably.

Gera: Thig algorithm wouldn’t make sense if the
ﬂjlffﬂiﬂrlﬂ system is spread all over the place, would
it

Socrates: Probably not.

Gera: And we both agree that a general-purpose
method that can aulomatically identifies the
hexagonal process structure of that algorithm.
from its formal definition (if Kung succeeds in
coming up with one) and finds a way to map it
onto the plane is, today, out of the question.

Soerates: Well, I would not propose to halt
research on antomatic programming. Besides,
mapping process structures seems a slightly eas-
jer then designing them.

Gera: Dut even il we discover such a method 2
or 20 years hence, it would need to specily the
mapping of process structures somehow, right?
S0 we're back to square one. Whether we spec-
ify the mapping of process siructure manually, or
let & “smart compiler” do the job, the kernel pro-
gramming language of a scalable multiprocessor
needs a notation for mapping processes to pro-
cessors. Quod erat demonstranduin,

Socrates: Hold it, we're not over yet. Ignoring
the fuburistic “smart compiler”, isn’t your pro-
posal & major setback lor prngmm_ming;, in some
sense? lsn't programming dilfieult us is? Won't it
become horrendous if the programmer will have
to control explicitly a new dimension, the defi-
nition of process structures and the mapping of
processes to processora?

Gera: ‘That’s precisely the point. Parallel pro-
cessing introduces a new dimension to program-
ming. In addition to time and space usage, we
must also control communication costs. And the
thrust of my argument is that if we want to break
the sequentinlity barrier, we must bite the bullet.
We must golve the communication problem at the
algorithm design and programming level, and not
rely on the hardware architect to solve it for us,
becanse he can’t.

Soerates: 1 like your enthusiastic siyle of arguing,
but you didn’t answer my question.

Gera: Well, there are severnl answers, which are
substantiated by my cxperience with program-
ming using a mapping notation.

Soerates: Bxperience? Don't tell me you've al-
ready built your computer?

Qera: No, not yet. Dut I have implemented &
soltware simulator which I have been program-
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ming extensively. Its just as good.
Socrates: Good for writing a paper.

Gera: No, just as good for my argument. My
answers are as follows.

One is that programming in higher-level lan-

guages is easier, en switching from sequential
to parallel processing, the 2- or 10-fold speed dif-
ference between conventional languages and very
high-level language programs is s%uz owed by the
difference in the ease of programming. If the
choice is between programming a von Neumann
machine using a conventional language, and pro-

gramming a parallel machine using a very high--

level language, sugmented with a mapping no-
tation, then I choose the latter.

The second answer is that [ have noticed a corre-
spundence between the complexity of data-strue-
tures in sequential programs and communication
structures in parallel programs (this is not a the-
orem). An array of data of a sequential pro-
gram is mapped into an array of processes in the
corresponding parallel program, where each pro-
cess hag only simple data-slructures (sealars and
1/O streams). A tree data-structure of a sequen-
tinl program is mapped into a process-tree of the
parallel program, where nodes are processes and
cdges are communication channels. The com-
plexity of defining the data-struetures of & se-
quential program is mapped into the complex-
ity of defining the process structures of a paral-
lel program and their mapping, so it scems that
overall program complexity is preserved.

The third answer is that the mapping notation
can be developed independently of the main pro-
gram, and is relatively easy to specify (some say
they are kids' stull).

The fourth answer is that I don't see any other
viable alternative,

Socrates: I am still uncomfortable with your so-
lution. Actually, I am a bit surprised to hear
it [rom you: haven't you learned anything from
Lisp and Prolog? Ien't explicit allocation of stor-
age an anachronism! Why is allocation of pro-
cesses to processors different?

Gera: You cerfainly have a point. However,
process-lo-processor mapping has much more
profound effcets on the performance of a parallel
progran than memory-allocation strategy on a
sequential program. And it is 2 much more difli-
cult problem to solve automaticslly. Even in dy-
namic storage allocation, the programmer is the
one who deterinives 1be data-structures used, al-
though he dves not control their location in mem-
ory. llowever, as you have pointed out, mapping
is the simpler part. It is conceivable that com-
mon process structures coubd be mapped auto-
malically, and mapping them mammally in ihe

meantime is not such a big burden.

Socrates: Maybe. But it seems to me that some
load-balancing is still necessary, at least in a
multi-user environment.

Gera: I agree. Such a load-balancing algorithm,
however, should specify the origin, orientation,
and perhaps also the density Snumhe.r of pro-
cesses per proeessor) of a systolic system. But
I don’t think it should twiddle with the inter-
nal mappiog of the process structure. Besides,
the person to implement this load-balancing al-
gorithm should be the systems hacker, not the
hardware architect, so the kernel programming
language should have a mapping notation. Quod
erat demonstrandum. . .

Socrates: This argument is getting boring. I re-
sign.

Gera: So my architecture is.. .

Soerates: Belore diving into the details, are their
any general implications that hold fer any scal-
able architecture programmed with a mapping
notation?

Gera: Let me see. I think that the interconnec-
tion pattern of such a machine should be simple
and regular, If it is not simple and intuitive, pro-
gramimers will have hard time utilizing it. [ also
think it should be of general-purpose, and mateh
the structure of many types of problems. Other-
wise algorithm designers will have diiliculties in
mapping problems into algorithms with ellicient
communication patterns.

Socrates: Simple, regular, intuitive, huh! I like
such conclusions. Motherhoed and apple-pie.
And what about the programming language?

Gera: Clearly it should be a high-level, expressive
concurrent programming lauguage. It should be
complele, self-contained, simple, and amenable
to ellicient implementation. It should be easy to
debug. It should have clear semanties. It. ..

Soerates: If you emit another busz-word, [ quit.
Gera: Sorry. I apologize.

Socrates: What makes a concurrent program-
11_11'111;; language expressive! What makes it high-
evel?

Gera: A concurrent programming language
should be able to specify process creation, com-
municalion, synchronization, and indeterminacy.
It is expressive if it can implement casily a broad
range of algerithme, and if it lends itself to » rich
set of programmivg techniques. I den’t think the
expressiveness of the language depends so much
on its voeabulary, as on the richness of its pro-
gramming idioms.

Socrates: Programming idioms? Do you want



Lo get your computer Jdo somelbhing uselul, or to
become asnolher Shakespeare?

Gera: A langueage is high-level if... Well, high-
level is sorl of a busz-word. I guess it means that
it supports convenient ways for structuring data,
and methods for treating data abstractly. It has
contrel structures such as recursive process and
function invocation. Dynamic storage allocation
and reclamation. These sorts of things,

Socrates: What makes it complete?

Gera: This is znother loaded term. A language
is complete il it can implement its own program-
ming environment, the tools that are necessary to
use the language convenienily. If you can casily
implement an interpreter for the language in the
language, then many software tools, particularly

debugping tools, are also easy to implement. I

You can implement a complete operaling system
in that language, all the better.

Socrates: I think the remaining properties are
rabher siraighiforward. So let's enumerate what
we have concluded to be essential properties of 4
general-purpose parallel computer:

1. It is sealoble.

2. It has a simple and regular interconnection
patiern.

3. It executes a high-level concurrent program-
ming language, augmented with a mapping
notation.

4. It is the responsibility of the application pro-
grams, not the architecture or the operating
syslem, Lo ensure loeality of interproceds com-
munication.

I gucss Lhe rest is just incidental details, and
lam a Lit tired now, 8o let’s hear them tomorrow.

2 INTRODUCTION

Systolic algorithms were developed by Kung
and his colleagues (ICuug 79, 82, Leiscrson #3) in
order to exploit the parallelism inherent in com-
putational problems. The systolic approach is
one of the few that shows how to put into efloctive
use the capabilities of emerging éjLﬁl technology.
These algorithms were designed for direct imple-
mentation in hardware and therelore were rigidly
constrained: they assume a synchronous array of
micreprocessors of a flxed sige and interconnec-
tion pailern. Each processor in the array has
limited processing and communication capabil-
ity and a local memory that ean accommodate a
swall program and a lew registers.

As a result, an implementation of a systolic
algorithm via a systolic array can solve problems
of up to a [ixed size ong. Complex interfaces
with a conventional von Neumann machine hawve
to be developed, and metheds for breaking prob-
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lemns to subproblems of o size that fits the sys-
tolic processor arvay and for combining the par-
tial results Lo form Lhe solution are also meces-
sary. Modifying the function of a systolic array
is either not possible, or can be done only by
halting its execution and downloading a differ-
enl microprogram HFHJH et al. 83). In addition,
programming systolic arrays to execute a desired
algorithm turned out in practice to be more diffi-
cult then expected, despite the relative simplicity
of the algorithm each systolic processor imple-
ments.

The systolic approach was introduced as a
hardware-oriented mothodology for eonstructing
special-purpose attached processors Lo conven-
tional von Neumann machines. We believe that
this view uwunecessarily limits its inherent poten-
tinl. In this paper we propose a framewerk for
constructing general-purpose parailel computers,
which incorporates the systolic approach as a
sofltware-oricnted methodology for algorithn de-
sipn and implomentation.

The proposed framework, termed systolic
programming, comprises an abstract machine,
a programming language, a process-Lo-process-
or mapping notation, and 2n algorithm develop-
ment and programming methodology. The 2b-
stract machine is an infinite processing surfzcc
(Martin 79). The programming lapguage is Con-
current Prolog (Shapiro 82a), nugmented with
LOGO-like Turtle programs iPnppnrl; 80) as a
process-to-processor mapping notation. The zl-
gorithm development and programming methed-
ology identifies two separale, though interrelated
aclivities: the design and implementation of pro-
cess structures and process behaviors }l{ung 79),
and the design and implementation of the map-
ipiug of these structures into the processing sur-
ace.

Algorithms suitable for this methodology are
best delined in terms of a dynamically changing
colleetion of software procenses, synchronized by
datallow. They might be called soft-systolic algo-
rithme, in contrast to the classical hard-systolic
algorithms, which are typically defined in terms
of a static volleetion of synchronous hardware
processors (Vijay Saraswat, personal comimuni-
cation).

Some key aspects of the systolic program-
ming approach are:

(1) It is potentially applicable to general-purpose,
mulii-tasking, multi-user computers.

(2) Arbitrarily large approximations lo the infi-
nite abstract machine are realizable using cur-
rent technology. These machines are sealable
with respect to the programming methodol-
ogy, since the performance of most systolic
algorithms improves linearly with the ma-
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chine’s size,

(3) Many important computational problems ha-
ve elfeient hard-systolic sofulions. It is con-
ceivable that even more have soft-systolic so-
lutions. , Also, parallel sclutions to problems

which, historically, are not associated with

the systolic approach, such as monte-carlo si-
mulations and array relaxation on mesh-con-
nected compuiers, are also easily implemen-
table within this ramework.

(4) Programming a processing surface using Con-
current Frolog and Turtle programs is compa-
rable to (and perhaps even easier than) pro-
gramming a von Neumann machine using a
conventional language.

The rest of the paper explains in more de-
tail the components of the systolic programming

approach — the abstract machine, pregramming

language, mapping notation, and algorithm de-
sign and programming methodology — and illus-
trates it with several programming examples.

3 THE ABSTRACT MACHINE

The abstract machine we propose is an in-
finite “processing surface” (Martin): A regular
arrangement of processors, each of which has
some local memory, can timeshare between sev-
eral software processes, and can communicate
with the neighbors connected to it. For conerete-
ness we assume that the processing surface is an
infinite rectangular grid of processors, each con-
neeted to its four neighbors, but other arrange-
ments are also possible. One suitable building
block for a processing aurface is INMOS’s forth-
coming Transputer (INMOS 83).

Various torus-based architectures that can
approximate an inflnile processing surface have
been proposcd in the literature (Martin 79, He-
witt 80, Sequin 81, Fiat et al. 84). They differ
in the ease in which process arrays of various di-
mensions can be mapped into them with even
load and with no communication penalty.

A naive implementation of a virtual infi-
nite processing surface is obtained by folding
a finite rectangular array of processors into a
torus. A torus can be mapped onto the plane
using constant lengith wires and a small num-
ber of crossovers, 2s shown by Zippel and Hal-
stead (Flewilt 80). The twistod-torus, and then
the doubly-twisted torus, were suggested ns im-
provements to the simple torus by Martin (Mar-
tin 79) and Sequin (Sequin 81). A further im--
provement, termed Polymorphie Arrays, was pro-
pesed by Fiat, Shamir and Shapiro (Fiat et al.
84). In that paper a detailed comparison of these
architectures is carried out.

A process structure larger than the actual

processing surface ean be spawned on it using two
complementary techniques: folding and conden-
salion. Folding treats the processing surfzce as
infinite and, in case it is approximated by a torus-
like structure, effectively folds the process struc-
ture several times around it. Since each processor
can timeshare between several processes this fold-
ing will allect only the level of multi-tasking on
each processor. Using folding the program can
view the machine as a virtual infinite processing
surface, maintaining ignorance of the particular
way in which it is being approximated.

However, simple folding will not always give
optimal performance, in case the program is
communication bound. If the communication-
to-computation ratio required by the software
processcs is larger then the one provided by the
hardware processors, then it is better to increase
the density of the mapping, by grouping adjacent
processes into one processor, thus inereasing the
ralio of inta-processor o inter-processor commu-
nicatious,

It turns out that for some soft-systolic al-
gorithms an optimal mapping density, in which
cumiutatiuu and communication are balanced,
can be computed analytically, as will be clabo-
rated in a subsequent paper. Tlis optimal den-
sity Lias the property that the performance of the
algorithm on a very large (even infinite) process-
ing surface will not improve even if the process
structure is mapped with with lower density (thus
reducing the computation load per processor) nei-
ther will it improve on a very small processing
surface even if spawned with higher density (thus
reducing the communication load per channel).
In other words, in some cases process structures
can be mapped on a virtual infinite processing
surface in an optimal way, regardless of the ac-
tual dimensions of the finite processing surface
that approximates it.

Current technology is sufficient for building
a processing surface. One of the more difficult
questions the architeclure of a general purpose
processing surface must address is the interface
to and usage of external I/O devices, One feasi-
ble approach is to connect devices such as a disk
drive and a local-area network interface to the
processing surface in regular intervals,

4 THE PROGRAMMING LANGUAGE

In principle, the systolic programming ap-
proach is insensitive to the particular program-
ming language chosen, as long as it is expressive
enough and is amenable to eflicient implementa-
tion. A programming language for a processing
surface should be able Lo specily the dynamic ere-
ation of processes, the formation of inter-process
communication structures, and process behav-



iors. Procesa behaviors include process ecmmmu-
nication, synchronization and indeterminate ac-
tions, as well as conventional control and manip-
ulation of data.

- It seems ihat at least five major candidates
may elaim to have this ability, namely CSP-based
languages (IToare 78), datafllow languages [Ack-
erman 82}, funetional languages (Friedman and
Wise 78, Henderson 82), Actor languages (Hewitt
80), and logic languages (Kowalski 74, Clark and
Gregory 81, 84, Shapiro 83a).

A detailed comparison of Lhe expressiveness
of these languages and their amenability to efll-
cient implemeniation is outside Lthe scope of this
ptgﬁzn owever, two points of reflerence will be
made.

On the expressivenmess side, the example
Concurrent Fruﬁ‘ag programs in (Edclman and
Shapire 84, Kusalik 84, Furukawa ot al. 83,
Hellerstein 84, Hellerstein and Shapiro 84, Hi-
rakawa 83, Hirakawa et al. 83, 84, Shalrir
and Shapiro 83, Shapiro 83a, 83b, 84, Shapiro
and Talewchi 83, Shepire and Mierowsky 84,
Takeuchi and Furukawa 83, Suzuki) and in this
paper {orm an oulstanding challenge {or any con-
current programming language. These programs
demonstrate several powerful programming tech-
niques, including the recursive formation of com-
plex communieation structures; the use of incom-
plete messages; the design of fail-safe system hi-
erarchics; and meta-programming, and also sev-
eral more convenlional ones, such as side-effect
free treatment of T/O, monitors, interrupts and
prieritics, and bounded- and unbounded-buffer
communication.

On the efliciency side, OCCAM gINMOS
84), a CSP-based language developed at INMOS,
seems Lo have the most eflicient implementation
on uniprocessors ko date among concurrent pro-
gramming languages, and will probably be the
first Lo have a high-performance mulli-processor
implementation, as soon as the Trapspuler is
manufactured successfully. Concurrent Prolog,
as well as the other langunges mentioned, have
yeb to manifest their amenability to eflleient par-
allel implementation.

. These points are not sufficient to justify
Concurrent Prolog being the lapguage of our
choice for systolic programming. The course of
development, however, was the other way round.
The systolic programming approach was con-
ceived as a consequence ug the experience accu-
mulated in programming in Concurrent Prolog,
and as a result of attemptla to devise a snitable
parallel architecture for it. Furthermore, the
systolic programming style was not enforced on
Concurrent Prolog, but rather was a natural de-
velopment, almost a discovery.
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Aller implementing Concurrent Prolog
(3hapiro 83a) I started playing with the lan-
guage. I could not help but nolice Lthat many
straightforward, innocent-looking logie programs
exhibit sytolic-like bebavior once viewed through
the execution model of Concurrent Prolog. Two
phases were identified in the behavior of these
programs: a “spawning”-phase, in which the pro-
gram spawns a scb of communicating processes,
and a "syslolic”-phase, in which these processes
behave as a systolic system, overlapping com-
putation and communication. The programs
that exhibited this behavior were not composed
in an attempt to implement systolic algorithms.
Rather, they were the most naive and natural
way to express a solulion o a problem in Con-
current Prolog. Some of them where not even
original Concurrent Prolog programs, but eom-
mon Prolog programs that were transliterated
inte Concurrent Prolog by adding read-only an-
notations and the commit operator at the ap-
propriate places. Examples are the ingertion-sort
im matrix-multiplicalion programs shown be-
oW,

Following these experiences, I have atlemp-
ted to implement systolic algorithms cxplici-
fly. One of the more challenping systolic al-
gorithms is the UBand-matrix multiplication al-
gorithm of Wung and Leiserson (Leiserson 83).
To implement it in Concurrent Prolog this time-
syuchronous algorithm had to be converted into
a data-llow synchronized ope. The resulting pro-
gran is 40 lines of code long (Shapiro Bﬂb‘i and
as far as I know il is one of the few working im-
plementations of this algorithm.

These experiences suggests that there is
gorne nabural relationship between concurrent
logic programming and systolic systems. That
gystolie systems provide a natural behavioral
reading to many logic program, in addition Lo the
familiar deelarative apd procedural {or problem--
reduction) readings (Kowalski 74).

It is fair to note Lhat even though all pro-
grams thown in this paper are written in Conp-
current Prolog, it seems thai they can be imple-
mented in PAI,{LUEAUIM}: and Gregory 84) as
well without great difliculty.

5 THE MAPPING NOTATION

Languages like OQCCAM, which specily pro-
cess arrays, may benefil from a mapping notation
that assigns processes to processors based on hor-
izontal and verlical coordinates. I have found af-
ter trial and error that a recursive language such,
ns Copcurrent Prolog can make betier use of a
diflerent mapping notation, namely LOGO-like
Turtle programs (Pappert 80).

Each process, like a Turtle, has a position on
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the processing surface and a hending. A fixed-
instroction Turtle program T can be associated
with any process invocation P, as in P@T (read
‘execute P al T7). The initial position and head-
ing of the invoked process P is inherited from the
involker, Its new position and heading are deter-
mined by *exceuting’ the turtle program T.

A fixed-instruction Tartle program:is a finite
sequence of Turtle commands, example of
such a program is

(forward(1),right(90),forward(1),left(50))

which ¢an be used by a reeursive Concurrent Pro-
log program to define n walk along a grid's diag-
onal. The forwerd and beck Turtle comman

take a distance as an argument, and change the

position of a process aceordingly. The lgff and
right commands take angles as arguments, and
change the heading of a process,

In the following forward is a shorthand for
Jorward(1], and right 1s for right(90).

‘The mapping notation can be added and de-
bugged independently of the dnl:rug.{]::.aug of the
main program. Ilowever, we found that graphi-
cal simulator of a processing surface, which shows
the actions of the processes in each proeessor, is
one of the better debugging tools for the pro-
gram itself, Sueh a aimtglatur, written in Prolog,
was used to debug the programs in this paper.
My experience using Turile programs so far i
that mapping simple structures — vectors, ar-
rays, and H-trees — is rather straightforward,
However, once the tool is there, the temptation to
implement more and more sophisticated process
structures and mappings is present. Debugging
the Turtle programs that mapped the Aleph-trees
and the Dynamic H-trees discussed below was not
a trivial task.

Since the architecture is completely dis-
tributed, when a process is to be executed on
a remote processor it must be sent there to-
gether with its associated program. This is not
a major source of inefliciency as it secems on firat
thought. A heavily-used program, that dynami-
cally spawns a process structure of a certain size

for every input, can be converted into a program.
that spawns a similar proeess structure cnce, and.

then processes an entire stream of inputs.

8 ALGORITHM DESIGN AND PROGRAMMING
METHODOLOGY

Given our observations on Cloncurrent Pro-
log and systolic systems the following approach
to algorithm design may be concluded:

(1) Compose a pure logic program. that defines
the desired input/output relation.

(2) Make it a Conecurrent Prolog program by
adding the appropriate read-only annotations:

and commit operators.

{3) Observe the program’s behavior: you've just
discovered a new systolic algorithm!

Ewvon though this methodology iz not pro-
posed completely seriously, it is not 2 complete
joke either, as the novel systolic readings of the
familiar logic programs below demonstrate.

On a more serious note, even for sequen-
tial, yon Neumann computers, algorithm design
is more an art then a science. Nevertheless, the
basic tools for designing sequential alguriti:ma.
namely data-structures, are quite well under-
stood. We have found that process-structures
serve a similar role for soft-systolic algorithms.
Many algorithms share the same process struc-
tures, and vice versa: when aitempting the de-
sign of a new algorithm, a rich arsenal of process
structures is an invaluable asset,

The relationship between sequential data-
structures and parallel process-structures is
even deeper. We have found that a sequential al-
gorithm that operates on a certain data-structure
often has a parallel counterpart that uses a simi-
lar process structure: a list of data is mapped into
a list of processes; a tree of data is mapped into a
procese iree; and an array of data is mapped into
a process array, This correspondence is manifest
in all example programs below.

The algorithm development strategy implied
by the systolic programming approach is similar
to that of designing conventional systolic algo-
rithms. A solution to a problem is defined in
terms of a collection of processes that overlap
computation with communieation. The commu--
nieation structure should be designed so it does
not introduce bottlenecks, and can be mapped
into the plane without much penalty. In contrast
to hard-systolic algerithms, a detailed design and
analysis of the timing of communication iz unnee-
essary for obtaining a correct algorithm and can
be deferred until fine-tuning for performance is
necessary, since operations are synehronized via
dataflow,

The claim for the greater freedom of soft-
systolic over hard-systolic algorithms can be
substantiated by two types of evidence. One is
showing that known hard-systolic algorithms are
eagier to specify and implement when viewed as
soft-systolic ones. This should be expected, since
it is easier to simulate a synchronous system with
a dataflow synchronized system then vice versa.
Examples include the Concurrent Prolog imple-
mentation of a systolic algorithm for Gaussian
elimination, shown below, and the algorithms im-
g]emented in (Shapiro 83b, Shafrir and Shapiro

3, Hellerstein and Shapiro 84).

Another type of evidence is novel algorithms



which are easier to conceive or implement un-
der the soft-systolic approach. Examples are also
starting to aceumulate (Edelman and Shapiro
84, Mellerstein 84, Shapiro 83b, Shapiro and
Mierowsky 84).

7 PROGRAMMING EXAMPLES

The exsmple programs below demonstrate
thie specification and mapping of various process
structures using Concwrrent Prolog as the pro-
gramming language and Tartle programs as the
mapping notation.

The first example is the sieve of Eratos-
thenes.

primes(Ps) - :
integers(2,Is), sift(Is?,Ps)@forward.
integers(N,[N|Is1]) -
NI:{=3LI+1. htegers[ﬂ].h}
sift([Prime|In JPrim%Out]?l] -
filter{In?,Prime,Out),
sift(Out?,Outl)@forward.

ﬁltcr&[ﬂﬂn],[’rime,[)ut] -
—:=N mod Prime | filter(In?,Prime,Out).
filter([N KIu],Prime [{;H Gfut?gl' -
0==\=N mod Prime | filter(In?,Prime,0ut).
Program 1: Sieve of Eratosthenes

Variants of this program are abundant in
the logic-programming folklore. Logically, it de-
fines the relation {primee(Pe): Ps is the (infi-
nite) list of primes.} Behaviorally, it defines a
solt-systolic algorithm. Using an awxiliary sifi
process, it spawns a dynamically growing set of
linearly-connected filter processes, one for each
prime number found, as shown in Figure 1.

integers  sifi

B 7 5
(6) B—2—E—
integers  filter filter sift

Figure 1: Bpawning a pipe of filfer processes

A, filter process copies its input stream to its
output stream, filtering out multiples of its local
prime number. The #4ff process also collects the
prime numbers in its ontput stream.

Program 2 is one of the simpler ways to
define the sort relation. Iis eorresponding Pro-
log program behaves like the ordinary recursive
insertion-sort algorithm. The Concurrent Prolog.
program behaves as follows: it first spawns a lin-
early connected sequence of snsert processes, one
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for every element in its input slream, as shown
in Figure 2. The last frgert process is spawned
with the empty input stream, due to the clause
sort(f |,{ /). Abthis time the pipe starts propagat-
ing data backwards: starting from the last pro-
cess, each process copics its ordered {or empty,
in case of the last process) input stream to its
output stream, inserting its local number in

the output stream so it remains ordered.

(@) o [3,1,5]

sort
(b) t
insert insert insert sort
() S
insert
Figure 2: Insertion sort
sort([X|[Xs Ysg =
insert(X,Zs?,Ys), sort{Xs?,Zs)8forward.
sort([ ][ [}-

i HX,[Y1Ys],[Y|Zs?]) -

e ye oot ot ).

inser;é}(,{‘ﬂ“i’s],[x, [Ys]) -
=<7Y | true.

insert(X,[ ,[X]).
Progream 2: Insertion Sort

Under reasonable assumptions, this program.
runs in linear time uging a linear number of pro-
cessors. The Coneurrent Prolog implementation
of merge-sort (Shapiro 83b), whose code is nhout
twice as long, runs in linear time using only a
logarithmie number of processors.

Qur third example is matrix multiplication.
A simple systolic algorithm for matrix multipli-
cation is shown in Figure 3. Two matrices are
fed into an array of processors. Each processor
in the array computes the internal produet of the
two vectors that pass through it. At the end of
the computation, each processor contains one el-
ement n?ﬂm resulting matrix.

An almoest identical behavior is achieved by
the following logic program mm, which defines
the relation mm{l”,la{, Z) :- Z is the result of mul-
{iplying the matrix X with the transposed ma-
trix ¥'. When called with two matrices, mm
spawns an array of §p processes, each ecomputing
the internal-product of two vectors (represented
as lists or streams).
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Figure 3 : A systolic algorithm for
matrix multiplication

il
mm(Xs?, Ys, Ze)@lorward.

vim(—,[ |, Jll
Xa 7)Zs)) -
o ipi&fﬁji53£ ﬁ[xs,vat.zs}@romm,

o s ket vt z1).
i-P{[II[ ]J' J

Program 3: Matrix Multiplication

The Turtle programs of mm spawn a vec-
tor of vm processes, whose heading is orthogonal
to the spawning direction. Each vm process, in
turn, spawns a vector of fp processes. A snapshot
of the spawning phase is shown in Figure 4. The
final result is a rectangular array of ip processes,
one lor each inner-produet that needs to be com-
puted.

The behavier of this program is different
from the systolic algorithm in Figure 3, in that
the vectors are not pipelined between processes,
but are shipped independently to each process.
In (Shapiro 83b) Program 2 is transformed to
pipeline the vectors between processors. This is
achieved by adding two output streams to each
tp process, one for copying each imput stream,
and connecting the fp processes accordingly.

Devising an algorithm that copies bindings
from one processor to another in a way that uti-
lizes this pipelining is still 3 research question.
Given such an algorithm, the modified. program
can multiply two n X n in time linear in n, using
n? processors.

2\ - mm
>-—1.rm

o - ip
Figure 4 : A snapshot of spawning a process
array

The fourth example shows how to spawn the
process strocture of a divide-and-conguer pro-
gram using H-trecs SI:reiseman 83}]. It computes
the relation {hanoi(N, A, B X):- the sequence: of
moves X can be used to move N disks from peg
A to peg B, such that no disk is ever placed
on a smaller one}. It is adapted from a similar
Pl‘l’*;;ng program by H. Ym The notation
pfN++,...) == ... I8 a shor for L
- NI1>0 |‘iv.-=m_1,.... AAL,...)

'ﬁﬂﬁﬁ?:ﬁf%&mm,n}.
Eﬁ?hh}bﬁﬂf @(left,forward(21(N/2
hanoi{ﬂjﬂi‘,fi:ﬂft::f (r ge]mifgrrzna;dEi;EN{@%’.

free(a,b,c). free(a,c,b). free(b,a,c).
free(b,c,a). free(e,a,b). free(e,b,a).

Program 4: The Towers of Hanoi

Program 4 spawns a tree of free processes,
one for each step in the sclution. The computa-
tion of these processes is trivial: given two pegs,
they compute the remaining peg. H the overhead
associated with spawning a remote process is very
high, then spawning only a partial H-tree may
be a better solution. Spawning a static H-tree to
solve several problems, a possibility mentioned
earlier, is not applicable in this case: who would
want to solve the same Towers of Hanoi problem
more than once (or even once)?

The mapping strategy used by P.rugra.m 4
requires fo know the depth of the ecmputation
tree in advance, which may be a limitation for
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Figure 5: Spawning an H-tree:

some divide-and-conquer algorithms. A method
for spawning computation trees on a processing
surface which docs not suffer from this problem
is deseribed in (Martin 79, Sequin 81). An imple-
mentation of another solution, termed dynamic
H-trees, is shown in (Shapiro 83b).

Another problem with H-trees is that they
are not evenly spread on the processing surface,
therefore may utilize it ineflectively. In the por-
tion of the processing surface covered by an H-
tree, roughly one third of the processors comn-
tain leaf processes, one third contain non-leaf
processes, and one third are either idle or serve

-—i

only a5 communication-relays. This may cause

load-imbalance if the tree is fairly static and per-
forms heavy computations, e.g. a parallel search
tree. An alternative to H-trees, called Aleph-
trees, evenly maps complete binary trees of even
depth on a processing surface by allocating one
leaf-precess and one internal-process to each pro-
cessor (except one). Due to space limitations it
will be reported upon in a subsequent paper.

gauss([[A0]As] Columns!dgglﬁs], [XXs]) -

pivot(A0,B0,Bs?.Bs JFactors),
XK= Eung{ !
row(Factors?, Columns?, Columns1,Xs,5um)

@(right,Jorward),
gauw&ﬂu]umnal?,}]ul?,xa @(fd,rt,fd,It).
gauss([ J,[ L[ ])
pivot(A0,B0,[B|Bs|,|[B1|Bs1),[A|As], [Factor|Fs]) :~
T
Bl;?th[%ﬂsgaftg r}’mr Fs)
pi 0,B0,3s?,B=1,As? Fs).
pivobAGSO LV 1 D-
rnw[Factnra,[[AMn] Gal‘umng],
[As1|Columns1],[X[Xs],Sum1) -
cell(Factors, A, As?, Asl),
Sum1:=Sum-+(A¥X),
row([FFactors,Columns?, Columns1, Xs,Sum?)
@forward.
row(Factors,[ |,[ |.[ ],0).
cell([Factor|Fs],AD,[A]As],|A1|As1]) -
Al:=A-{A0*I'actor),
cell(Fs? A0,As? Asl).
eell([ A, L[ D-
Program 5: QGaussian Elimination

Program 5 is a Concurrent Prolog imple
mentation of a systolic algorithm for Gaussian
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elimination. It demonstrates the ability of Con-
current Prolog to form complex communication
structures, and also the need for a graphical no-
tation that supports the construction and under-
standing of systolic algorithms.
Program '

5 defines the relation {gauss(4,B,X):~ X is the
list of solutions to the linear equation defined by
the eoellicient matrix A and veetor of values B}.
It spawns a lower-triangular array of processes
that has pivet processcs on the diagonal and cell
processes below it. The recursive construction
of the process array is shown in Figure 6. It is
a graphical representation of the firet elause: of
Program 5.

gaus

1 I 1 Columns 1
¥ ,KEI
row

Figure 8 : Recursive construction of the Gauss
Process array

The computation has three phases: ome
spawning-phase and two systolic phases — elim-
ination and back-substitution. The execution of
the spawning phase and the elimination phase
overlap. The general information flow in the two
systolic phases is shown in Figure 7.

Factors

o
B's A's T
Figure 7 : Iﬁ]}]j_‘ur_ma.tiiunz Flow in Gaussian
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The program spawns the n*® row with the
coeflicients of the n-th equation, in which the first
n — 1 variables have been eliminated. The n'®

row eliminates the coefficients of the n'® variable-

from all subsequent equations in the elimination
hase, and computes the value of that variable
in the back-substitution phase.

. A row is composed of a pivef process and a
cell process. The behavior of the pivet process is
shown in Figure 8.

T

F:=A/AD X: ={B0O-Sum)}/AD
Bl:= B-BO-F- :

(a) Elimination (b) Bock-substitution

Figure 8: Behavior of a pivot process

To eliminate the coefficient A of the first re-
maining variable in an equation, the pivol com-
putes the factor F:=4 /A0, where A0 is the coefli-
cient of the pivot variable. The factor FF is broad-
casted to the rest af the row, which subtracts it-
self, multiplied by the factor, from the equation,
and forwards the modified equation to the next
row. The pivot also modifies the B value of the
equation accordingly. During back-substitution,
the pivot receives Sum {rom the row, and com-
putes the value of X,

 The behavior of & eell process is shown in
Figure 9,

Al X

F Sum 1 Sum
A

Al:= A-AD-F Suml:= Sum+ X

{a) Elimination {b) Back-substitution

Figure 9: Behavior of a cell process

‘When receiving a factor I, each cell process
computes Al:=A-{F*A0), where A ie the coefli-
cient received from south and A0 is the locsl eoef-
ficient, and sends the result north. Note that the

" methods.

processes that compute the back-substitution,
X:={B-Sum)/A, and Suml:=Sum+{A*X], are
created during the spawning phase, and are sus-
pended on their Sum variables uniil the elimina-
tion phase is complete.

Program § can solve n equations in n vari-
ables in time linear in n» on a processing surface

whose size is linear in n®, It can be extended to
handle zero-pivots.

8 COMPARISON WITH OTHER WORK

Systolie programming shares the belief that
architectures based on global communication,
such as NYU’s Ultracomputer (Gottlieb et al.
83), TRAC (Sejnowiski et al. 80}, Alice (Darling-
ton and Reeve 81), and others, are not the ulti-
mate approach to parallel processing. Such ar-
chitectures are reactionary, since they capitalize
on our ignoranee of parallel eomputations. Their
atiractiveness will decrease steadily as our unm-
derstanding of parallelism increases and we know
mere about designing and programming systolic
and other local-communication based algorithms.

Several similar architectures based on loeal
interconnections have been proposed, including.
the Apiary (Hewitt 73), the CHiP computer (Sny-
der 83), FAIM (Davis 84), the Bagel (Shapiro
83b), and Martin's original Processing Surface
{Martin 79).

They differ mainly in their programming
) The CHiP Computer relies on a
mapping-compiler (Bolthari 81) to allocate stati-
cally processes to processors, and to compile the
amalgamated programs of processes mapped to
the same processor into code that timeshares be-
tween them (Berman and Snyder 84). This ap-
proach is feasible for programming an attached
processor, but not for a general-purpose com-
puter. A similar direction was pursued with the
Om*, (Schwans 82).

On the other exireme, the Apiary allows
the dynamic creations of processes (“objects”),
and relies on algorithme (or h&u.risf.iusg] for
runtime migration of processes to ensure load-
balancing and locality of communieation (He-
witt and Lieberman 84). Like the global-
communieation approach, the Apiary accepts ig-
norance of the behavior of computations. as a ba-
sic assumption. To date, sll in seience
resulted from assuming, in spite of superficial ev-
idence to the contrary, that there is some order
in the world, and that sciemce’s goal is to un-
eover it. Resigning before the battle has begun
by declaring the world to be unpredictable would
be a self-fuliilling prophecy, but would not result
in seientific progress.

The systolic programming approach advo-
cated in this paper is in some sense a mixture



of the two, and in another sense more conserva-
tive then ixtt-!:, It allows the dynamic creation
of processes, but relies on the program to map
itself on the processing surface. Mthnuﬁh it is
conservative it is also future-proof. Should a suc-
cesslul mapping-compiler be developed, it can be
incorporated as a preprocessor to mapping-less
programs. Should some technigues for runtime
load-balancing be found useful for certain appli-
cations, they ean be implemented by adding a
layer of interpretation, which may be compiled
away for specific programs using techniques of
partial evaluation. Necdless to say, a statically-
allocated distributed meta-interpreter is the best
tptc]:}lliur experimenting with load-balancing algo-
rithms.

8 CONCLUSIONS

Many discussions on parallel processing go
in circles: “to exploit parallellism fully we must
spread the computation as much as possible”,
“but if we spread it too much we will generate an
unmanageable amount of communication®. The
systolic approach is the only one to date that
show how to cut this Gordian knot — to allow
massive parallelism withoul communication bot-
tlenecks.

So far the systolic approach was viewed as
having only limited applications. We hope that
gystolie programming will help to earry its in-
sight into the realm of general purpose parallel
compuling.
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