PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1984,
edited by 1COT. © ICOT, 1884

419

Design and Implementation of the Relational Database Engine

Hiroshi Sakai Kazuhide Twata
Shigeo Kamiya Masaaki Abe

Toshiba B & D Center
Kawasaki, Japan

Abstract

Delta, a relational database machine, is now
under development at ICOT (Institute for New
Generation Computer Technology) to study

knowledge base machines (KBMs). Delta is
characterized by its specialized processor, RDBE
{(Relational Database Engine) and its large
semiconductor memery. This paper focuses on
the RDBE and describes its design considerations,
functions, implementation, and performance
analysis.

I INTRODUCTION

Development of a KBM (Knowledge Base
Machine) is one of ICOT's major themes. By
KBM, we mean a machine that can manage a
large amount of lnowledge, offer inference
machines simultaneous access to the knowledge
and respond quickly to these accesses.
Development of relational database machine Delta
(Shibayama 84} and research on the connection of
inference machines to it are being conducted as
& three year project.

The reasons the relational moedel was adopted
are (1} Delta was required te have fundamental
data management ability so that knowledge
management software would work well on the
inference machine, and (Z) the relational model
seemed more profitable for a logic programming
system than any other database models {(Codd 70)
(Gallaire 78)

In the design of Delta; we aimed at high
performance, & large amount of secondary
storage, and an intimate interface with logic
programming, since Delta was planned to be
connected to many inference machines via a local
area network (LANL However, the relational
database systems developed for conventional
computer systems and commercial database
machines are far from meeting our performance
reguirements. Especially in cooperation with a
logic programming system, each atiribute is
required to be handled at a reasonable speed and
processing the null wvalue is to be taken into
account. 5o, we have designed a new database
machine for this purpose.

Akio Tanaka

Shigeki Shibayama
Kunio Murakami

ICOT Research Center
Tekyo, Japan

LAN

channel

HiA

— (] '

LAN ¢ Local Area Network

¢ Interface Processor

CP + Control Processor

RDBE : Relational Database Engine
MP : Maintenance Processor

HM ¢ Hierarchical Memory

=

Fig. 1 Delta architecture

2 OVERVIEW OF DELTA ARCHITECTURE

Delta's global architecture is shown in Fig.l.

In this figure, the dotted line shows the final

configuration. Delta consists of the following

components:

(1) An interface processor (IP), which connects
Delta to a local area network (LAN) and the
Multibus.

(2) A control processor (CP), which provides
database management functions, such as
concurrency control and database recovery.

{3} A relaticnal database engine (RDBE), which
is the key component for processing relational
database operations in Delta, The RDBE is
implemented by the combination of a
general-purpose processor with a specialized
processor.

{4 A maintenance processor (MP), which
provides functicns that enhance Delta's
reliability and serviceability,

(5} A hierarchical memory (HM), which provides
functions for storing, accessing, clustering and
maintaining relations. The HM is implemented
using a genéral-purpose processor as oa
controller, a high wvolume semiconducter
memary and large-capacity moving-head
disks. The HM is connected %o other

420

components through high-speed channels, The HM
can be seen as a large semiconductor buffer with
& wvery short latency and fast transfer from the
RDBE.

The general Delta command processing
sequence s as follows. The IP receives
relational algebra level commands, called Delta
commands, from a host connected to the LAN,
and sends them to the CP. The CP translates
these commands inte a sequence of internal
subcommands, which are then issued to the RDBE
and HM to make them cooperatively perform the
specified database operation. After execution of
the Delta commands, the [P transfers the result
stored In the HM to the host via the LAN.

3 DESIGN AND IMPLEMENTATION OF RDBE
3.1 Design Considerations
3.1.1 Basic Idea

The basic idea of RDBE processing
mechanisms is that a join operation is performed
efficiently by sorting tuples of each relation
according to their values and comparing tuples
from the relations in a manner resembling a
two-way merge operation. This idea is profitable
since it Is applicable not only to the equi-join
operation but alse to nonequal joln operations
and other relational database operations that
take two relations. This idea has also been
realized in RDBM (Hell 81) and other database
machines. The advantages of the RDBE,
however, are the following:

(I} The combination of the sorter and merger
improves performance as in pipeline processing.

(2} EDBE can process null values and duplicate
values efficiently.

{3} The projection operation is performed during
another operation.

(4] Parity check and sorting check mechanisms
improve reliability.

(5) Data processing by the RDBE's CPU gives

RDBE functional flexibility.

31,2 Stream Processing

The RDBE was designed to perform relational
database operations on data stored In the HM,
Two block multiplex channels are provided for
each RDBE, so that data may be transferred at
high speed. Whenever the RDBE performs an
operation, data is transferred from HM to RDBE
and from RDBE to HM.

There exist two alternatives. One is to place
the RDBE between the HM's semiconductor
memory and its moving-head disks, as in YERSO
(Bancilhon 8Z), This would reduce data transfer
time and improve system throughput. However, it
is difficult to modify the HM hardware and its
operating system, since the HM Is Implemented
using @ mainframe to achieve a high volume
semiconductor memory, large capacity secendary
storage, and high speed data transfer. Besides,

the 122 Mbyte semiconductor memory of the HM
behaves like a disk cache memory.

The other alternative is to make the RDBE
access the HM's semiconductor memory directly,
This would improve performance if the data is
small enough. However, the memory access bus
would be a bottleneck, since sort operations, in
general, cause frequent access to the key field
of each tuple. It is hoped, however, that the
HM can be made to perform the operation on
small volumes of data, even though this has not
yvet been adopted.

3.1.3 Processing the entire tuple

The RDBE takes the entire tuple, not only
the key field. One alternative is to process the
value field, which would reduce the data transfer
between RDBE and HM, as well as the required
RDBE's memory. The reasons we did not adopt
this alternative are (I) processing the entire
tuple would become necessary in the HM, {(2) the
st operation requires comparison of all the
fields of a tuple.

3.1.4 RDBE commands

The RDBE offers various kinds of commands
necessary for relational database processing.
They are classifled Into the following categories:
(a) Relational algebra commands, such as join,
projection, and selection
(b) Sort operaticn commands in both ascending
and descending order

(c) Set operation commands, such as Intersection,
union and difference

{d} Arithmetic operation commands

(e} Aggregate commands over an entire relation

and alsc over a nonintersecting partition of a

relation
(f) Miscellaneous commands specific to the way

in which Delta manages data,

The whole list of commands is shown in Fig.
Z, The RDBE performs these commands using its
hardware modules, the sorter and merger, and
also using its general-purpose CPLL

Command name Comments

A3S intratuple operation
JOIN =4, 540 Cartesian product
RESTRICT =4, Tange
SORT ascending/descending
AGGREGATE |aggregate operation
LUNIQUE eliminating duplicate tuples
LINION set operation
INTERSECTION | set speration
DIFFERENCE | set operation
1EQLFAL equalty test between relations
ICONTAIN inclusion test between relations
COMPARE compare attributes of each tuple
ZONE-50RT for clustering
DELETE for _updating

Fig.2 List of RDBE commands

The sorter and merger were designed 1o
perform intertuple commands, i.e. commands
which require cemparison between tuples. The
sorter and merger are able to compare a fleld of
a tuple with a field of another tuple, iLe,
typically an attribute or the entire tuple. The
sorter and merger are alse able to compare a
field of a tuple with constant wvalues, and
compare fields within a tuple. The rest of the
commands are performed by the CPU itself or
the combination of the CPU and the sorter and
merger. This decision was made considering the
cost/elliciency and functional flexibility of the
RDBE.

The internal representation of a tuple is as
follows. Each tuple in a relation has the same
length {(less than & Kbytes) and the same number
of fields; corresponding fields over a relation
have the same data type and length. A field
usually has an extra area called a tag, which
indicates whether the value is null. The data
types are unsigned integer, signed integer, and
single-precision floating point. The length of the
first two types must be even and less than &
Kbytes.

3.2 Configuration
The RDBE configuration is shewn in Fig. 3. It
is designed for high-speed relational database

processing by means of pipelined sorting and
merging.

DT| PT
[TN Module |
oT| PTy ML

i Sy gl R |

[Serting Cell, |

Channel

DT| PT| NL

IEur ting 'lZ:elI;z

iSwting Ceulz

OT| PT| NL

HM

A

N I ——
g
Eng
&

[Serting CI';

[T NN | F——

DT| PT| NL

& e ———

| Merger

bDT| PT

__-.-.|J:] F;:Iapter{GUT J———— Channel

Fig. 3 RDBE configuration

421

The RDBE is implemented using the [ollowing
madules:

{1) A general-purpose CPU, which is used as the
RDBE controller.

(2) Two HM adapters, which serve as interfaces
between the RDBE and HM.

(3) The IN module, which transforms input data
inte an Internal format suitable for the sorter
and merger modules, Among these
transformations are:

* Field ordering, which shifts a key field to
the head of the tuple

* data type transformation

* generation of null value bit signals

(%) A sorter, which generates sorted tuples.

(5} A merger, which performs external sorting
and relational database operations using a
processing algorithm based on a two-way
merge operation.

In Fig. 3, DT,PT,NL and DPF stand for data
lines, parity lines, a null line and a duplication
line, respectively. The null line is used to
denote that there is a tuple with a null value
lkey on the data lines. The duplication line is
used to denote that there is a tuple having the
same key wvalue as the subsequent one on the
data lines.

These modules are contrelled to run
simultanecusly. Data transfer is performed in the
handshake mode between these modules. Each
madule is designed to achieve a data processing
rate as high as the data transier rate between
the RDBE and HM.

The main data path is from the HM adapter
{IN) to the HM adapter (OUT)} through the IN
module, sorter, and merger. [f &n ERDBE
operation takes two relations, as in a join
operation, the operation is performed in the
following way. The tuples of the first relation,
which was originally stored in the HM, pass
through the HM adapter (IN); are modified by the
IN module, sorted by the sorter, and are finally
stored Into a buffer of the merger. Then the
tuples of the second relation pass through the
HM adapter (IN), are modified by the [N module,
sorted by the sorter, and are stered into another
buffer of the merger. While storing the second
tuples, the merger also compares these with the
previously stored tuples, and generates the
results. They are sent to the HM through the

‘HM adapter (OUT).

If the CPU itself is required to manipulate
the data, the result from the merger is sent to
the CPU's main memory via the HM adapter
(OUT). After the CPU has finished the
manipulation, the final result is sent to HM via
the HM adapter (OUT)L

3.3 Sorter
In order to apply a sorter in the RDBE

environment, the following conditions must be
satisfied:

423

{1} It receives the original sequence of tuples
from the IN module, and sends the sorted
sequence to the merger,

(2) The data transfer rates both at its entrance
and at its exit are equal to that between the
ROBE and HM.

{3} The delay between the ending of input data
transfer and the beginning of the output data
transfer is small.

(¥} It is able to sort a small number of tuples
at reasonable speed,

(3) It is able to process absolute values of the
standard binary notation up to 409% bytes
long; possibly with the null value signal on.

Various kinds of sorting algorithms have been
studied (Knuth 73), and hardware sorters based
on them have been proposed and Implemented.
Tanaka proposed and implemented a sorter based
on the heap sort (Tanaka 80). Although it
satisfies the above four conditions, it Is difficult
to implement so as to it satisfy the condition{5)

Our sorter, based on the two-way merge-sort,
iz similar to Todd's (Tedd 78L It is slightly
inferior to Tanaka's for the third conditlon, but
it satisfies the condition(5). Our sorter has the
following features:

(1} The sorter consists of a linear array of 12
processing elements, called the sorting cell,
and one processing element, called the sorting
checker; these arrange imput data elements in
a specified linear order (ascending or
descending). Since the data bus consists of
& lines, the wunit size of data, word, is two
bytes. The sorting operation is performed by
pipeline proecessing.

{(2) The sorter performs only the Internal sort
operation. The maximum number of tuples
that the sorter is able to process is shown by
the following expression.

min(2**N, [M/L] }

Here, N is the number of sorting ceils

{currently [2), M is the memory size of the

last sorting cell (currently &4 Kbytes), and L

is the tuple length.

(3) The sorting cell has two operation modes:
the sort mode and the pass mode. The sort
made merges two sorted sequences of tuples
inte one. The pass mode does not merge, but
transfers input data directly to the next ceil.
Let C be the number of tuples to be sorted,
then [log.2(C-1)] of the sorting cells become
the sort “mode, and the others become the
pass mode. The sorter takes (ZLC+N-1)T,
excluding the time which the sorting checker
and the control program take. Here, T is the
time required to transfer one byte (currently
330 nsec). For example, 5096 tuples of 16
bytes are sorted in 43 milliseconds,

(%} The sorter processes null values by
recognizing the tag field and locates them at
the last part of the sorted sequence.

(5) The sorter performs stable sort operations on
equal wvalues, j.e., it keeps the original
relative order of the input sequence of tuples
having the same values.

{6) The sorting checker compares the key field
of each tuple with that of the next ong, so
that it checks the results to increase the
reliability of the sorter. It also generates
the duplicate signal when the values are the
same. Since it takes an additional time of
LT, the time vrequired s (2LC+L+N-1)T
excluding the software overhead time.

Fig.s4 is a block diagram of the sorting cell,
It contains two memories, each with a
first-inffirst-out function (FIFQ), a comparator
and a control circuit.

[
dﬂj*---—r"'-*dﬂ:l

RV VS
_____'-
SEL
M ¢ Memory

CMF + Comparator
CNT : Controller
SEL @ Selector

Fig. & Block diagram of a sorting ceill

The sorting cell operation for every two bytes
consists of three cycles. They are memory read
cycle, another memory read cycle, and
compare-transfer cyele, In the first cycle, the
word of the first sorted subsequence is read and
stored into the register of the comparator. In
the second cycle, the same operation for the
other subsequence takes place. In the last cycle,
the comparator compares them and the selector
outputs the smaller or greater word to the
{i+l)th cell, acecording to the ascending or
descending mode. In this cycle, the word sent
from the (i-1)th cell is stored into the memory.
Each cycle takes 220 nsec, and the twe-byte
merge operation takes 660 nsec,

3.4 Merger

The merger is the central module of the
RDBE, which performs relaticnal algebra
operations and other operations using a
processing algorithm based on the two-way
merge-sort operation. These are called merger
commands and are classified into the five types
of operations listed in Fig. 5 They are
characterized by their abllity 'to process nuil
values and duplicate values.

A block diagram of the merger is shown in
Fig. 6. The merger consists of an operation
section and an output control section.

PASS COMMAND RESTRICT COMMAND
LOAD REST-NULL
PASS5-1(NOP) REST-NONULL
| PASS-2(UNQ-IN) REST-EQ
SORT CQMMAND REST-NE
SORT-IN REST-RANGE
SORT-EX

UNQ-EX
| B M

COMP-ALL JOIN-ALL
COMP-NULL JOIN-NULL
COMP-NONULL JOIN-NONULL
COMP-EQ JOIN-EQ
COMP-NE JOIN-NE
COMP-LT JOIN-LT
COMP-GT JOIN-GT
COMP-LE JOIN-LE
COMP-GE JOIN-GE

NOP: Mo operation UNG-IN @ Unique-Internal

EX : External NONULL : Not null
Flg. 3 List of merger commands
Sorter
T
U-Memoryle- == = == === L-Memory
!
[|
Contrel
Command |- - J==» ROM |#=-=d=«-={Counter
Register Table

Operation
—

L-Tuple JI L-tuple
Memory ! Memory
¥ |
Cutput Qutput
Sequence Control
Contral Saitiun
Fleld |..__t_ ___ _[Fieid
Reorder rr Reorder
ata Type, = ___fDataT
Transform i * Transform
Fie et JField
Select [H “|select
1
L
New TID "
Cenerate # Selector

l

HM Adapter(QUT)

Fig.6 Block diagram of the merger

The eoperation section contalns a comparater,
table, and two
and L-memory) having a

a control ROM
memories (U-memory

& Kbyte

423

FIFO function. This

followlng steps:

(1} Storing two sorted streams from the sorter
into the memories

(2) Reading a tuple from each of two memories
simultaneously and providing them to the
comparater and the tuple memory in the next

section performs the

section
(3) Comparing the keys of each tuple and
detecting output tuples satisfying the

conditions of the command

These functions are executed under the
control of a l-Kword * 10-kit ROM rtable. The
address of the ROM table consists of a null
signal, duplication signals, the comparison result
flag and so0 on. The output of the ROM table
consists of memory address control signals,
tuple-selection signals used for the output control
section, and an operation-end signal.

The output control section consists of two 16
Kbyte tuple memories, two field-ordering circuits,

twe field-selection eircuits, two data-type-
transformation circuits, a new TiD
{tuple-identifier) generator, a selector and an
output sequence controller. This section

performs the following functions under software

control:

(1} Reordering the flelds of an output tuple

(2) Selecting fields of an output tuple

(3 !tﬂle‘;:nvering the ociginal notation of the key
<

() Adding a new TID to an output tuple

Examples of these functions are shown In
Fig.7. Fig.7la) shows the reordering of the fields
of an output tuple. A tuple(l) with five fields
(A, B, C, D, E; B is a key field) is rotated to
tuple(2) by the IN module, so that the key field
is positioned at the head of the tuple, and
tuple(Z} is rearranged to the original tuple(3) by
the merger.

(1 (ATB[C]D[E]
(2) [(BiCi{D|E] A]
(3 ([A]B]C|D]E]
(a)
) Alelc|bplE]
L
5 [B]c] @ [AJD][E]
{b)
7)) [wtn JAJDTE]
{c}

Fig. 7 Functions of the output control section

424

The selection of fields of an output tuple [s
shown in Fig. 7(bk. In this figure, tuple(d) is
projected 1o tuple(5) or tuple(é) by the
assignment of the twe pointers, Py and Py

Fig.7{c) shows the addition of a new TID to
an output tuple.

An example of the JOIN-EQ operation is
illustrated In Fig.8. JOIN-EQ command s
typically used when an equi-join of two relations
is performed.

Stream 51 Stream 32
(U-Memory) (L-Memory)
WADR [AL | A2 LADE|BL| B2
o 2| B 0 1|T
{a) 1 3| C i i[5
2 3 3] 2 3 v
3 b A 3 2 L
JOIN Al=B2 |
v
Al | AZ |BL | B2
3I(C| 3 5
(b) 3| C| 3 W
3| D|3| 5
3 ODl3[VW
UADE |LADR [U=Tuple | L-Tuple | Result| Output
0] 2_5_ 1T P
0 I 2B 35 4
i 1 ic i5 = [3C3s
(c) L 2 3C iy = 3 C 3y
2 1 ip 15 = 3D35
2 2 3D v = [@AD3V
2 3 4 A 53U <
END | 3

Fig. 8 Example of processing JOIN-EQ command

Fig.8(a) shows twe Input streams (51 and 52)
sorted in ascending key-crder (Al and Bl); these
are stored in the U- and L-memories,
respectively. UADR and LADR provide sequence
numbers, explaining the address control scheme
for each memory. Fig.8(b) shows the output
tuples and Fig.8(c) illustrates the execution
process. The processing algerithm of the
JOIN-EQ command is as follows:

If Al*Bl then UADR=UADR and LADE=LADR+l
If AL<Bl then UADR=UADR+l and LADR=LADR
If Al=Bl then output a matched tuple pair
and
if DP aof Al and DP of Bl are on
then UADE=UADR and LADRE= LADE+ |
if DP of Al is on and DP of Bl is off
then UADR=UADR+] and LADR=LADR*
if DF of Al is off and DP of Bl is on
then UADR=UADE and LADR=LADR+I
I DP of Al and DP of Bl are off
then UADR=UADR+] and LADR=LADR+!

Here, DP stands for the duplication line and
LADE* points to the first tuple of those which
have the same values. Adopting this algorithm,
the merger is able to perform the JOIN-EQ
command on the attributes having duplicate
values efficiently.

The operation of the merger is divided Into
three cycles. These are the four-byte read
cycle, compare-transfer cycle and the ROM table
read cycle. Each cycle takes 220 nsec and is
synchronized with the sorter. :

3.5 Data Processing by the CPU

Since the operations performed by the sorter
and merger are limited to the intertuple
comparison concerning one fleld (typically one
attribute), for each relation, the other operations
must be performed by the CPU. These are as
follows:

(1} Selection under complex conditions
{2) Arithmetic operations
(3) Aggregate operations

In order to improve the performance, the
RDBE has a compiler which generates the native
machine instructiens inte the main memory. The
instructions are executed on the tuples generated
by the merger and stored into its main memory
by the HM adapter (OUT). The result is sent to
HM through the HM adapter (QUT)

Since the data processing using its CPU can be
overlapped with the sorter and merger operation,
a combined operation is able to be performed in
ene shot. The following is an exemplified query;

SELECT *
FROM A, B
WHERE al=bl AND a2>b2

a join operation with a conjunctive condition.
The RDBE is able to perform the join operation
in one shot; the equal coendition, using the sorter
and merger, and the other, using its CPU.

3.6 Control Mechanisms

The RDBE's control mechanisms of the
medules, in order te perform an RDBE command,
are described in this section.

Since the sorter and merger have limited
capacity; l.e. the maximum amount of data which
the sorter and merger are able to process in one
scan, the CPU contrel: the modules in a
different way. This depends on the category of
the RDBE command and the amount of data.
They are as follows:

(1) Unary intratuple operation

Arithmetic operations and selection are
involved in this category. When the amount of
data is so huge that the modules (including the
capacity of the CPU's main memory) is not able
to process it in one shot, the CPU controls

the modules for each nonintersecting portion
(called & substream) of the original data
repeatedly.

{2) Sort-type operation

When the amount of data is smzll encugh for
the sorter to process in one shet, the CPU
indicates the sorter to sort it and the merger to
pass it. When the data is not greater than
twice the sorter's capacity, the CPU first
indicates the sorter to sort one half of it and
the merger to store it into its U-memory. Then it
indicates the sorter to sort the rest and the
merger 1o merge them. Otherwise, the CPU first
controls the medules as in the second case, to
generate two partially sorted sequences, Then
the CPU indicates the merger to merge them
repeatedly. Since each step is based on a
two-way merge operation, it becomes inefficient
when the amount of data becomes large, in
comparisen with the multi-way merger (Dohi 83).

{3) Binary operation (type 1)

In a join-like operation, the CPU controls the
modules to perform the operation for each
combination of the substreams of the relations
repeatedly. An alternative is to sort each tuple
first and to process the JOIN command on
them. Howewer, this is not adopted for two
reasons; (1) it takes more time when the amount
of data i not eight times greater than the
sorter's capacity, and (2) It does not work well
when a large number of values are duplicated.

(4) Binary operation (type 2)

In a difference-like operation, the CPU
controls the modules as follows. Let Ra and Rb
be the original relations, and the operation be to
get (Ra-Rb), The CPU first indicates the sorter
to sort the first substream of Rb (say Rbl) and
the merger to store it into its L-memory. Then
the CPU indicates the sorter to sort each
substream of Ra and the merger to perform the
RESRICT-NE operation between each substream
of Ra and RbI repeatedly. Since the operations
described above generates a temporary result of
(Ra-Rbl), the CPU repeats the same operations
to generate the final result.

Besides the control mechanisms described
above, the CPU is able to centrol the merger to
perform different operations on the same data.
This is wseful in the RDBE's Delete command. In
this command, the RDBE deletes those tuples the
key of which match any of the condition values.
First, the CPU controls the sorter and merger to
store the condition wvalues Inte the merger's
U-memory. Then, for each page, the CPU
controls the sorter and merger in two steps; (1)
Store all tuples into the merger's L-memory and
at the same time, output tuples which unmatch
any of the conditlon wvalues (RESTRICT-NE
operation), (2) Output tuples in the L-memory
which match one of the condition wvalues
(RESTRICT-EQ operation).

Fig.% Ulustrates an example. It offloads the

425

HM's tasks necessary to the rollback operation,
because the difference between the original page
and the deleted page is clear and easy to handle.

condition values

| < |
| & |

an original page

-rrunluwu.
‘-:nmlfnﬂ!
#Mu—xﬁnu‘ E

blof

.TE command

} remaining tuples

} deleted tuples

Fig. 9 Example of the DELETE command

3.7 Increasing Reliability

The RDBE has the following features to gain
r¢li.@bit'rty. A parity check mechanism and the
sorting checker deteet hardware errors with very
little increase In processing time. When an error
occurs, the CPU resets the active modules and
then controls the HM adapters to inform HM to
retry the data transfer. HM has only to treat it
as an ordinary /O errar.

During the power-up sequence, the CPU
controls the modules to perform RDBE operations
on certain test data. The main memory, rather
than HM, holds the test data, which is provided
te the IN medule through ‘the HM adapter (IN).
The result is stored In the main memory wvia the
HM adapter (OUT) and is checked by the CPL.
This mechanism is useful since most of the
damage is expected to occur at power-on time.

% PERFORMANCE ESTIMATION

Since every RDBE module, except the merger,
proceeds In a deterministic way, the time
required to perform an RDBE operation can be
estimated. The activity of the merger, however,
depends on the distribution of values in the Input
tuples, so we present a werst-case estimation of
a significant eperation, equi-join,

The following list sums up the parameters
necessary to estimate performance:
N ¢ number of sorting cells

M : merger's U- and L-memory capacity

Cn: tuple count of the n-th relation

Ln: tuple length of the n-th relation

Fn: number of substreams; equal to

[(Cr-1)/min(2%*N,M/Lnl+ 1

Snj: j-th substream of the n-th relation
R : tuple count of the result

T : time required to transfer one byte

In a join operation, the CPU controls the

426

modules in the following way:

send a request to HM through the HM adapter (IN}
while the first stream i3 not exhausted
begin

get a substream from HM
modify it in the IN module
sort it in the socter
store it into the U-buffer of the merger
sCnd @ request to
{IN)
while the second stream is not exhausted

begin
’_‘Eet a substream from HM
modify its format in the IN module
B sort it in the sorter
I compare it with the previous cne 1o generate
the result
end
end

A

adapter

Here, the statements enclosed are executed in
parallel.

The total time taken in section A s
calculated as follows: The sorter, Including the
sorting checker, takes (251IL1+L+N-D)T for the
i-th subsiream of the first relation. The IN
module takes an extra time of LIT and the
merger takes an extra time of T. The total time
is equal to the following expression:

(2SLiL1+N+2L1) = ZCIL1+FL{N+2L1)

The total time taken Iin section B s
calculated in a similar way. The merger,
however, takes an extra time of
((S1i+52)max(L1+L2)-52JLZ)T for scanning the
i-th substream of the first relation and the j-th
substream of the second relation. In addition,
generating a tuple as a result takes (LI+L2)T.

After all, the equi-join operation takes the
following time:

(ZCILI+FLIN=2LINT +

FUCZL 24{C 1+C max({Li+L 20 F2(N+2L2NT +

RILL+LT

When Cl and C2 are equal to 4096, and L1
and L2 are equal to 16 bytes, and the number of
the resulting tuples are small, the RDBE takes
approximately [28 milliseconds. However, this
estimation is unfair because it ignores the
following process; accessing the directory,
concurrency control, staging the relations Into
the HM's semiconductor memory from its moving
head disks and s0 on.

5. Conclusions and future plans

We have described the design considerations
ang implementation of the RDBE. The RDBE was
implemented to accommodate it to practical use
in the relational database machine Delta.

The RDBE s presently (Aug. 1934
incorporated in the Delta system and is
undergoing a system test. At the end of this

year, the sorting cell, excluding its memory will
be newly implemented using gate-array
technology, in order to reduce the volume of the
RDBE.

ACKNOWLEDGEMENTS

The present research effort is part of a major
research and development project of the fifth
generation computer, conducted under a program
set up by the Ministry of International Trade and
Industry's Agency.

We would like to express our sincere
appreciation to the members of the ICOT KBM
group for their valuable discussions, and to Dr.
K. Mori, director of the TOSHIBA Information
Systems Laboratory, who provided the oppottunity
to conduct the present ressarch.

We would like to thank the TOSHIBA
development group, In particular K. Oda, T. Oka
and 5. Matsuda for their cooperation In designing
and implementing the RDBE.

REFERENCES

Boral, H., et al Implementation of the Database
Machine DIRECT, IEEE Trans., Software Eng.,
Vol. SE-%, Nous, Nov,, 1982

Codd, E.F. A Relational Model of Data for
Large Shared Data Banks, CACM, Vel.l3, No.§,
June, 1970.

Dohi, Y., et al. Sorter using PSC Linear Array,
Internaticnal Symposium on VLSI Technology,
Systems and Applications, pp.233-239,

Gallaire, H., and Minker, J. (eds)
Data Bases, Plenum Prass, 1978,

Logic and

Hell, W. RDBM-A Relational Database Machine
Architecture and Hardware Design, Proc. 6th
Workshop on Comp. Arch, for Non-Numerical
Processing, Hyeres, France, June, 1981.

Knuth, D.E. The Art of Computer Programming,
Val, 3 / Sorting and Searching, Addition-Wesley,
1973,

Shibayama, 5., et al. A Relational Database
Machine with Large Semiconductor Disk and
Hardware Relational Algebra Processor, ICOT
Technical Report, TR-055, 1934,

Tanaka, Y., et al Plpeline Searching and Sorting
Modules as Components of a Data Flow Database
Computer™, IFIP 80, pp.427-432, 1930,

Todd, 5 Algorithm and Hardware for a Merge
Sert Using Multiple Processors, 1BM 1. RES.
DEVELOP., Vel.22, No.5, Sept., 1978.

