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ABSTRACT

Ap a part of Fifth Generation Computer Systems
(FGCS) praject, a personal sequential inference machine,
P8I, haa been designed for software development. FSI has
4 logie based machine language, FGCS Kernel Language
Version 0 (KLO), which is similar to DEC-10 Prolog.
One of the main features of PSI is that this high-level
machine language is executed directly in firmware, a
microprogrammed intarpreter.

The micreprogrammed interpreter is similar to the
existing Prolog system and uwses “structure sharing™ for
representing structured data. Howewer, itz unification
mechanism is based on “argument eopying”, and it also
provides powerful new control structures, such as *remote
cut® and “bind hook®, for practical use. The several
primitive functions required to build the operating system
on PSl, such as interrupt handling and memory allocation,
are also implemented as a part of the microprogrammed
interproter. This interpreter fully takes advantages of
microprogramming technique and the features of special-
ized hardware of PSL

1 INTRODUCTION

A Personal Sequential Inference Machine, P31, has
been designed as a software development tool {Yokota 83),
(Uchida 83), (Mishikawa 85). Its machine instruction set
is designed to be of the same level as the FGCS Kernel
Language Version 0, called KLO (Chikayama 83). KLO s a
logic programming language based on Prolog and includes
most prolog functions, except for such data base handling
a3 "assert” and “retract®. However, KLO Is intended to
be uzed primarily for writing the operating system, as well
ag for developing application programs. For this reason,
gpecific functions related to execution control and low-
level system description have been introduced in KLO.

One of the critical design decisions for any new
machine architecture is the determination of the level of
its machine instruction set. If the machine instructions
are designed to be low-level, cach instruction has simple
functions and it can be executed quickly. However, tha se-
tual execution speed depends on whether the compiler can
generate optimized object code. If machine instructions
are designed of the same high level as source statements,
hardware/firmware takes responsibility for fast program
execution.

Since conventional machines have relatively low-level
instructions, existing Prolog systems hawe implemented
by the former approach. Recently, more sophisticated
machine architecture based on the former approach has
been proposed (Tick 84). However, we considered that
high-level language machine approach iz better for im-
plementing P'SI for the following reasons:

{1) Dynamic features in logic programming

In logic programming system, variables are usually
type-less and their data types are determined at execu-
tion time. The backtracking mechanism provides non-
deterministic feature in program execution. The com-
piler cannot generates the deterministic code for auch
dynamic execution, and produces the interpretive code for
them. To speed program execution using compiler, the
user specifies explicitly the behavior of the program and
restricts its generality. However, these dynamic features
produce several benefits to vsers, The architectural sup-
port for them iz desirable.

(2) Simple interpretation mechanism

The basic interpretation mechanism of Prolog is quite
simple. If we close-up its unification process, for ex-
ample, it may be shown that feiching the values of
caller and callee arguments and comparing them are the
most dominant operations. Several data types must be
manipulated in the umifieation process, and the num-
ber of instruction steps required for each type is usually
small. Even for structured data, complexity results
from its nested ‘structure and a similar small mumber
of steps s wsually sufficient for each structure element.
Microprogramming techniques, such as powerful multi-
way conditional branching, are suitable for implementing
this unification procedure. For fast data fetching, the
interface between CPU and the memory unit has been
designed as simple as possible in PSL

(3) Small interpreter kernel

Since the interpretation mechanism is quite simple,
small number of steps are required for the interpreter
kernel. This means that even if the kernel is imple-
mented completely in microcode it iz manageable and
hand-optimizable. We estimated the size of the kernel at
approximately 1K steps.

{4) Flexible microprogramming



KLD was originally designed at ICOT and its lan-
guage specification will be improved in future to reflect
our experience with it. The flexibility of microprogram
implementation iz desirable for this reason. In addition,
it enabled us to embed debugging and evaluation facilities
in the interpreter with little additional overhead time.

In keeping with the above comsiderations, the in-
terpreter system for P§I ha: been implemented com-
pletely in microcode and is called "PSI micreinterpreter
®. The following section provides an overview of the
microinterpreter and its basic interpretation mechanism.
Section 3 describes the main features of its kernel con-
trol, Section 4 describes special event-driven control, and
Section 5 describes the relationship to the operating sys-
tem.

2 OVERVIEW OF THE MICROINTERPRETER

Since the machine language KL is similar to the logic
programming language Prolog, the functions performed
in the microinterpreter are basically the same as those of
existing Prelog interpreters.

Unifleation and backtracking are performed at the
microprogram level.

Some primitive functions and frequently used Fame-
tions are incorporated as built-in predicates, and are ex-
ecuted directly with no definition.

Since KLO is PSI's machine language, it must includs
sufficient functionz te implement P8I operating system,
which works as 3 stand-alone system. These functions
usually require low-level and hardware dependent opera-
tions. In result, the microinterpreter must support both
pure logic programming functiona for user's application
system and low-lavel system fupctions for its operating
system in & uniform manner. Some functions are incor-
porated as built-in predicates, and others are performed
by system support functions of the microinterpreter .

3.1 Organizstion of Microlnterpreter

The microinterpreter consists. of the following three
parts, as shown in Figure 1.

s the kernel
» built-in predicates

« operating system interface
(1) Kernel

The kernel implements pure logic programming func-
tions such as call/return execution control and unification.
Since the unification process is almost independent of ex-
ccution control, it is implemented as a separate micro-
program routine. Every user-defined predicate is inter-
preted within this kernel.

{2) Built-in predicates

The microinterpreter incorporates many built-in predi-
cates to support primitive operations or frequently used
operations. These predicates are implemented directly in
microcede. The typical usage of them are listed below:
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» Primitive operations
ox. atom(X), unbound{X)
« Rewriting operations with side effects
ex. set-vector-element(Vector Position, Element)
» Frequently used and determinate operations
ex. add(X,Y,%), increment(X,Y)
¢ Hardware resource manipulation
ex. set-register{Register, Tag,Valus)
« Operating system support
ex. change-process(ProcessMumber)
» Special execution control
ex. cut, fall, bind-hooloX bandler{X)}

The evaluation process for each built-in predicate is
invoked from the kernel. Namely, when such a predicate
appears in a clause, the kernel executes indirect jump to
the object microprogram routine according to the opera-
tion code. This process takes advantage of the special dis-
patching hardware. The routine evaluates the predicate's
arguments, executes the designated operation, unifies its
results to the given arguments, and finally returns control
to the kernel. Some built-in predicates overwrite the ar-
guments by their results instead of unification.

(3) Operating system interface

Several built-in predicates are provided for operating
syetem support. the primitive system operations are per-
formed implicitly as cperating system interface functions.
These include process switching, physical page allocation,
interrupt handling, and exception handling.

Process n
| Kernel e —l
]
Execution
Comtroller Paal
n.'l?n:atnr 1"
Feil 154::“5: i r
Intarrupt
11——11—— it per * ] Intarface [
— Dperating
: 1 Systen
Beilt-in .
Pradicats I Interface
maK. 256
Exception l
Intarface 1

Figure 1. The Structure of the Mlcrolnterpreter
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For KLO jaterpretation, several stack and heap areas
are required. Their allocation is effectively controlled at
the microprogram level. Whepever additional meamory
space is required, the page allocator is called. This routine
examines the memory environment and, if necessary, al-
locates a new page.

Interrupts are checked in the kernel or in particular
built-in predicates. When an interropt is detected at one
of thess check points, the interrupt interface is ealled.
This Interface routine examines the interrupt source,
determines the corresponding handler process mumber,
and finally, exchanges the current process to the handler
procass.

Exceptions are treated similarly to interrupts, except
that no process switching oceurs. The exception interface
routine examines the exception source and invokes the
corresponding handler predicate,

The process switcher saves the whole environment, of
the current process, and loads the new enviromment of
the called process. Since the saved environment includes
the microprogram counter, the interrupted process cam
eontinue jts execution from the latest interrupt point of
the microinterpreter . The process switching is also caused
by the detection of unusual conditions, sech a8 no physical
page or no exception handler, This mechanism is defined
ag a “trap”.

2.2 Basle Executlon Mechanism

The interpretation mechanism of the kernel iz based
on DEC-10 Prolog (Warren 77). However, several use-
ful data types, such as vectors and strings, have been in-
troduced, and powerful execution contrel mechanism has
been provided. Sinee the control stack is separated from
the local stack to achieve this sophisticated execution con-
trol, as a result, the microinterpreter uses four independ-
ent stacks: Local, Global, Control, and Trail.

Figure 2 [Nlustrates internal object form correspond-
ing to a KLO sample program. A set of the clauses which
bave the same head predicate is called s *procedure”. It
is packed into a data block and stored in the heap area.
Each predicate argument is represented as an ordinary
data type. If it appearz in a head predicate, it iz inter-
preted as a unification instruction and its tag is regarded
as an operation code. There is no explicit instruction for
unification and backiracking in the internal form.

The goal is translated into a code type data pointing
to the callee procedure code, and the required arguments
follow it. The invocation link from a caller goal to the
callea procedure is established by the compiler, and using
this link, the microinterpreter gets the information about
the first clause of the callee procedure. Then, the micro-
interpreter creates callee’s variable cells and the argumenta
of caller goal are unified with those of the calles head,

If unification iz completed successfully, the eurrent
environment is pushed on the top of the control stack, and
the callee’s body geal {g(X) in this example) is evaluated
next in the same manner described abeve. If the invoked
predicate is & unit clause, comtrol returns to the caller

and the next body goal of the caller is evaluated. On the
other hand, if urification fails, the microjnterpreter geta
the alternative clanse and tries it.

During the above operations, several base registers
are maintained as the execution epvironment. These are
the base address of the callee variable cell area, caller and
callee argument addresses, and so on.

The use of each stack is similar to that in other
Prolog systems. A local stack iz used to store the values
of local variables. Similarly, a global stack is used for
global wariables, which represent variables in structured
data. However, it also stores molezules and other control
information, such as an exception control block. A contral
stack is used for saving the execution environment which
iz required at returning to the caller or at backtracking
to the alternatives. A trail stack is used to reset variable
bindings during backtracking. For this aim, cell addresses
of the bound variables are saved in the trail stack. To reset
the control emvironment, the old values are also saved in
the trail stack along with their memory addresses.

The PSI hardware has been designed to efficiently
interpret KLO and is equipped with specialized support
mechanisms for checking tags, conditional jump by tag,
stacking variable cells, and so on (Taki 84).

2 FEATURES OF THE KERNEL
3.1 Argument Copylng with Frame Buffer

In the unification process, the values of both caller
and callee arguments are dereferenced and compared with
each other. The microinterpretar divides this process into
two phases. One is fetching and evaluating the caller ar-
guments and setting their values on the top of the local

Callar Frocadure Calles Procedure

dase, slze
{reserve (word)
{clause | type)
cod _—
, bramch —
variable ]
varfable ¥ n: . ddml
(tagl . [vaiua] varisble
code —
variable I
con PULTY, — —
[Sokn, X} :- qiX), ..., *{ET).
E{lﬂry.:(]- 1= afi). variabie "
’ wariabie 1
{clause | type)
branch ]
atom Rary
variable X
code -
varfable X

Figure 2. An Example of Imternal Ohbject Form
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Figure 3. Argument Copying

stack. The other iz fetching and evaluating the calles ar-
guments and comparing their values with the copied caller
argument values. Figure 3 shows this process. In this
way, the caller arguments are copied to the callee environ-
ment before unification. The same urpification mechanism
has been used as in Tail Recursion Optimization for the
DEC-10 Prolog system (Warren 80). However, the micro-
interpreter employs this method not only in tail recorsion,
but in avery goal call. We call this unification methed
Yargument copying®.

Argument copying has the follewing advantages.

{1) If a goal is the last in a caller clanse and that clause
will complete deterministically, its environment need
not be saved for backtracking. Since required caller
argument values are copicd imto the calles environ-
ment by argument copying, the dizused caller environ-
ments can be discarded before unification. Especially
in recursive predicate calls, the same memory space
is used for both caller and callee (Tail Recursion
Optimization). .

(2) When unification fails and the microinterpreter mmst
backtrack to alternative clauses of the same proce-
dure, the copied caller arguments can be used again. It
iz not necessary to re-evaluate caller arguments. This
feature speeds the backiracking process.

(3) Sincethe callee arpument evaluation process is separate
from that of the caller, unification mechanism is
simplified.

The one disadvantage of argument copying is the in-
creases in execution time and memory space by the copy-
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ing process itaelf.

To decrease this copying overhead, the copying area is
overlapped with the callee local variable area. In this im-
plementation, no operation is required for callee’s unbound
variables (callees X in Figure 3), because the correspond-
ing caller argument values have already been set in those
variable cells by the copying operation. To easily detect
stich unbound variables, a tag is provided for variables
which appears first within a clause. This tag guarantees
that the value of a variable is unbound.

In addition to this optimization, PSI has a special
hardware buffer, called a “frame buffer™, which helds the
top 31 words of the local stack. Since the caller argu-
ments are copied to this buffer, access to them is very fast.
Furthermore, P8I has two frame buffers. I the amall loap
operation i3 written by the tall recursive predicate call,
their execution can be performed within this hardware
buffer by switching the frame buffer alternatively.

3.2 Inner Clanse OR

Alternative clauses in Prolog are considered to be
connected by the OR function. However, OR connection
can be defined in & clause, as shown below.

(X, Y) = ooy (£(X) 5 8(Y) ), ..

We distinguish this type of OR connection as “inner
clauge OR". Omna of the advantages of inner clanse ORs
iz that argument passing can be eliminated. For ex-
ample, the above example could be written using alterna-
tive clauses, as follows:

pXY) = .., temp(X,Y), ...

temp({X,—) = r{X).
temp(—,Y) := s(Y).

However, the unification process for calling temp(X,Y)
ia obviously redundant, as compared with the first ex-
ample. If calles clauses have many and complex head ar-
guments, overhead becomes a significant factor.

The main reason for separating the control stack from
the local stack is the implementation of this inner clause
OR. The gozls within the inner clause OR share the vari-
able cells with the parent clause which involves this inoer
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Figure 4. Environment of the Inner Clause OR

clanse OR, as shown in Figure 4. However, its execution
level is different from that of the parent clanse.

3.2 Execution Control by Invecation Level

Prolog program execution can be controlled by the
built-in predicates, "cut® and “fail”. Howaver, these are
not always sufficient to cover many practical requirements,
The execution control of KLO has been improved, One of
the extended control facilities is the “remote cut” opera-
tion. The function of the remote cut is to cut the alterna-
tive clauses up to an arbitrary point, Initially, we designed
this mechanism so that the programmer could label the
desired position, then cut up to this Iabel.

p(X,Y) = ..., mark(12), oY)
fX) - .., -:ut;up-tl:v{12}, fail,

However, this strategy caused complex label manage-
ment problems, One of these involved dealing with labael
information for other remote cut operations that would
discard the label. Finally, we solved this problem by in-
troducing the execution level. Specifically, sach axecution
environment is distinguished by the invocation lovel.

Uning the level number, the user can cut the disused
alternative clauses to the any level, relatively (relative-
cut{Level)), or absolutely (absclute-cut{Level)), For this,
the microinterpreter has a level counter, which is imere-
mented whenever & goal is called. This execution level
is also saved in the control stack as an execution environ-
ment, and is used to reset the level counter to the callers
exacution level.

By combining the remote cut with “fail®, the fail-
throw mechanism of *Catch and Throw” can be imple-
mented. Since it iz expected that the fail-throw mechanizm
will be uzed frequently, the built-in predicates, “absolute-
cut-and-fail” and “relative-cut-and-fail®, are provided.
For success-throw mechanism, the built-in predicate, “sue-
ceed”, is provided. This predicate also uses the level num-

ber to return to an arbitrary execution level, In the next
example, the predicate r(Y) will be invoked after exscution
of succeed(4).

p(X) = ..., afX), 1Y), ... (level 4)
A0 - oK), . (level 5)
§{X) - ..., succeed(4). (level 6)

This execution level iz also uzeful for debugging KLO
programs. For example, it i3 possible to eliminate un-
necessary trace output by using the execution level.

3.4 Predicate Call Mechanisym

The link from s caller predicate to the callee proce-
dure is usually established at compile time. Clause invoca-
tion is performed using this link as described in Section 2.
However, the microinterpreter supports more flexible and
powerful predicate call mechanisms, as described below.

(1) Indirect Call

Indirect call is a predicate call that invekes the ob-
Jeet procedure through indirection pointers, This type of
call is useful for eases in which the procedere to be called
is dynamically determined, and thus, its location is not
kmown at compile time. For example, il & user program
requires a operating system routine, however, its predicate
address cannot be determined at compile time. The com-
piler generates an invocation link to the indirect word in
this case, and the operating system completes this link at
loading time by filling the required procedure address into
the indirection word. This indirect call mechanism iz also
useful for debugging, because the object procedure ean
be dynamically exchanged from the original one to the
debug-support procedure by exchanging this indirection
word.

(2) Dynamic Call

The buili-in predicate “apply({Code, Arguments)” al-
lows the user to invoke an arbitrary procedure with ar-
bitrary arguments at runtime. The micro routine checks
whether the fist argument of “apply” is a code, and checks
whether the second argument is a vector having the correct
number of arguments for that code. If all the input condi-
tions are satizfied, the designated procedure is invoked in
the same way a3 an ordinary predicate call, For exam ple,
if X is bound to the code *p(X,Y) - q{X).”, and Y is bound
to the two element vector ®a 2",

-y BPRIF(X,Y), .

acts ag if it were written
ey DELE), .

{3) Clause Indexing

Clause indexing i a predicate call in which the object
predicate (not procedure) is selected according to the value
of one of the caller arguments (Warren 77). This type
of predicate call is very effective if the callee procedure
has many alternative clauses, as in the case of a data
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base access. Figure 5 shows the internal object form for
clause indexing. If the index argument remains undefined,
indexing does not apply and all alternative clauses must be
tried. Therefore, each clause should have two alternative
chains: one as an ordinary chain and the other for clause
indexing. The microinterpreter has a state flag, which
indicates the indexing mode. When backtrack occurs,
the next alternative clavse iz fetched alopg with one of
these two chains, depending on the state flag. In DEC-10
Prolog, the onty first argument can be used a2 an index.
However in P5I, the index argument is determined by the
compiler, and its argument number is 26t in the Internal
object form.

4 EPECIAL EYENT-DRIVEN CONTROL

The mieroprogramimed implementation enables many
dynamic features with little increase in overhead. Taking
full advantage of this, the microinterprefer provides a
dynamic predicate call mechanism, which is triggerad on
gpecial evente. A procedure can be waked up by binding
during unifieation, by backtracking, or by detecting illegal
conditions during evaluation of a built-in predicate.

4.1 Call on Binding (Blud-Heok)

The unification-driven predicate call mechanism, called
“bind-hook”, is introduced to know when a variable is
bound and what is bound to it. This can be effectively
used for sophisticated programming and debugging. For
this implementation, the data type “hooked wariable™ i=
introduced. This data type indicates for an unbeund vari-
able, and the procedure address waiting for its binding.
Whenever a value is set to seme undefined variable doring
unification, the micreinterpreter examines whether the
destination cell has a hooked variable. If it does, the wait-
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ing procedure it invoked after unification.

At first, the variable and the code to be called are
defined by the built-in predicate “bind-hook({X,Code)”,

..., bind-book(X, (p(X,Y).q(Y), ..) ), ..

The microinterpreter checks whether the given vari-
able is =till vnbound, then sets the code address in its cell
as 8 hooked variable. In the above example, a memory
address of the code *:- p{X,Y},q(Y), ...." is set into X,

‘When the “hocked variable” is found during unification
and some value is geing to ba set to it, the waiting proce-
dure address is saved before binding, After the unification
process has completed, the required procedure is invoked.

a3 hlnd—hﬂuk[}{, [P{xlﬂaqm] L vy rt?:ﬂ-
HXY) - .y a{}c,z},'.'__' o

o(8,X) - 't'[ki-r
The last clause will be executed just as below.
s(a.X) = pa,Y), oY), 1(X).

If more than one “hooked wvariable™ are found in
an unifleation process, after it has been completed, the
geveral procedures are invoked at the same time. Thege
are executed like as being connected by AND funetion.

4.2 Call on Backtracking (On-Backirack)

When a predieate fails, the remaiaing alternative
clauses are evaluated(backtracking). If some alternatives
become disused, they ean be discarded by the built-in
predicate “cut”. However, it is diffeult te partially discard
the alternatives. Furthermore, thers is no way to protect
the necessary alternatives from deletion by the careless
e of “eut”™.

The built-in predicate "on-backtrack(Code)” is provided
to define the alternative clauses that are not to be affected
by "cut”. The following two clauses have the same effect
gnd leave an alternative. The differemce batwaen them
is that the alternative clause defined by "on-backtrack®
cannot be eliminated by “eut®.

.y 0R-backtrack{ (p(X),a(¥)) ), ...
wey | true ; p(X)a(Y) ), ..

To implement this mechanism, the microinterpreer
saves the given code address in the trail stack whose entry

‘has the special tag, “on-backtrack-call®. All variables

used in the alternative clanse must be compiled into global
variables, which are not affected by “cut®.

When backtiracking oceurs, the microinterpreter looks
up the trail stack entries for the undo cperstion. If “omn-
backtrack-call® is found during this process, the micro-
interpreter suspends the backtrack process and invokes
the specified code, In order to continue the backirack, the
invoked code should terminate fail. Therefore, the com-
piler automatically appends the built-in predicate “fail®
to the end of the coda.

4.3 Call on Exeeption (Exception-hook)
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The built-in predicates are designed for efficient ax-
ecution of primitive and frequently used operationz. From
thiz point of view, each built-in predicate has limited
input conditions. The built-in predicate *add®, for ex-
ample, must have numeric data as its first and second
arguments. If these input conditions are not satisfied,
the microinterpreter raises exceptions and invokes a cor-
responding handler predicate, as bellow,

=rny adﬂ[leJE]l P{E]l L] D
wany adﬁ[‘x;‘r‘zl’l, handler, p(Z), ...

There are 32 system-defined exceptions, and the code
addresses of their corresponding exception handlers are
located in the top 32 words of the global stack.

In addition, the user can deflne exceptions using the
built-in predieate “exception-hook(Exception,Code)”,

..y exception-hook{overflow, handler), ...
handler(X1,X2,...,.X8) - check(X3,34), ...

and raise the exception at any time using the buili-in
predicate “raise(Exception, Arguments)®.

.., raisefoverflow,{1,2,...8)), p(X), ...

In thiz case, the nser-defined exception handler is waked
up a3 follows, ’

handler{1,2,...,8) :- cheek(3,4), ...

5 RELATIONSHIP TO THE OPERATING SYSTEM

PSI has ita own operating system based on logie
programming. Several low-level built-in predicates are
provided for access to PSI hardware resources, such as
registers, WCS, main memery and [/O devices. Entire
cperating system can be written using only these predi-
cates, as in conventional computer systems. Hewever, this
approach is ebviously ineficient in the case of PSI. The
loadstore built-in predicate executes slowly because its
operand data is fetched through the dereference oparation.
On the other hand, it is not practical to implement antire
operating system in firmware. Designing the interface be-
tween the operating system and the hardware system is
gimilar to dedigning the machine instruction lewel.

The operating system functions to be considered here
can be divided inte two groups. Memory allocation and
interrupt handling are the examples of the first group and
these are closely related to KLO interpretation, For ex-
ample, memory allocation for stacks and heaps depends
on the wsage of such area for interpretation. The opera-
tions required for interrupt handling dependa on the inter-
rupt check timing during interpretaticn. These functions
are performed by the operating system interface routines
deseribed in Seetion 2.

The functions of the second group are independent
of the KLO interpretation mechanism. They are imple-
mented as built-in predicates. A design decizsion had to be
made as to which functions would be merged and imple-
mented as a buili-in predicate. Taken into consideration
were efficiency of the system program execution, descrip-
tiveness for non-logical low-level system cperations, and
clearness of the interface between firmware and software,

To decrease operating system overhead, frequently-
used functions ehould be implemented in microcode. Process
switching and garbage collection are examples of this type.

The load register and input/output functions have
side effeets, and these operations cannct be undome.
Therefore, they should be implemented az built-in predi-
cates as in the conventional machine instructions Load /Store
or Input/Output.

H some of the operating system functions are imple-
mented at the microprogram level, and if others that
are closely related are implemented at the software level,
the system control table may be referred from both
frmware and software modules. To aveid eross-tallk be-
tween firmware and software modules, and to keep clean
the interface between them, related functions should be
implemented either scftware or firmware, but not both.
As a result of this design strategy, software and firmware
can be modified independently.

5.1 Memory Management

PSI hardware has a large logical memory space of
4G words, divided inte 258 independent segments, called
“arcas”. Fach area is managed in units of pages of 1K
words, The area is specifled by the following factors:

# Current area top address

« Current area size

+ Corresponding page map base address
» User-defined area size limit

* Necessity of garbage collection

The above five factors form a block, Area Control
Block (ACE). However, they are stored In different physi-
cal loeations. For example, the exrrent area top address is
stored in the register file, and each page map base address
iz stored in the high-speed memory used for address trans-
lation. To manipulate them independently of the physi-
cal implementation, built-in predicates, such as “set-page-
map-base(Area, NewBase)”, are provided. Each factor of
an area comtrol block can be accessed using these built-
in predicates. Howewer, some predicates perform more
complex functions. For example, if the user designates
the smaller size than the current area size in “set-area-
size{Area, NewBize)®, the microinterpreter shrinks the size
of the area, and returns the disused physical pages to the
free physical page list.

Ag described in Section 2, dynamic memory alloca-
tion is performed as one of the microinterpreter functions.
Since the memory space is allocated in a unit of pages, the
page aliocator is called by the occurrence of page boundary
crossing, To effectively detect this situation, PSI hardware
has a special carry flag, which is set by the page boundary
overflow during address caleulation.

At first, the page allocator checks whether the next
page has already been allocated. If it does, there is noting
to do. If the next page does not exit, the following condi-
tions are examined.

» whether the pew area size i3 within the user-defined



limit.
+ whether the page map for address transiation can be
expanded.

« whether free physical pages are remaining.

If the above all conditions are satisfied, a free physi-
cal page is fetched from the free physical page list, and
allocated to the area. If mot, the page allocator ralses a
trap.

5.2 Process Management

To execute a KLO program, the microinterpreter
maintains several base addresses. Some examples are the
top addresses of the four stacks and the base addresses of
the caller and callee variable cell areas. The key addrezses
that iz indispensable for backtracking and returning com-
trol are saved in the control stack. The remaining base
addresses, howover, are temporarily holding on registers.
Therefore, if process switching ceeurs, this information
must be saved in somewhere corresponding to the process,
©On the other hand, the microinterpreter must have the in-
formation required for process management. The process
mumber, the execution priority are examples of it. They
are also accessed by the operating system.

Therefore, the information required for process con-
trol iz divided to two parts, one referred to by both
firmware and software, the other accessed only by Srmware.
The former is called the Process Control Block (PCB), and
the later is called the Extended Process Coentrol Block
(EFCB].

The built-in predicate “process-control-block(Process,-
FCB)* and ®set-process-control-block{Process PCB)" are
provided for access to the PCB. However, since EPCB in-
volves significant information for the microinterpreter | it
is hidden from the software and there is no built-in predi-
cate for accessing the EPCB. When the operating system
must access to the EPCB for process creation and process
switching, the EPCB is implicitly accessed by the built-in
predicates, “initialize-process{Process,StartCode, StackArea)”
and “change-process(Process)”.

5.2 Interrupt Handling

During KLO program execution, interrupt signals are
checked for at several points in the interpretation process.
If one detected, the interrupt interface routime- is called.
This routine determines the interrupt source, and collects
the information related with it. The collected information,
such as interrupt code, are saved in the memory by this
interface routine. Finally, to sctivates the corresponding
interrupt handler process, process switching is performed
automatically at the firmware level.

The built-in predicate, “interrupt-code(Interrupt,Coda)",

is provided in crder to access the saved interrupt informa-
tion in the activated handler process.,

If the entire eovironment can be saved for restarting
the interrupted process, the interruption may be possible
at any poiot. However, it iz desirable for fast process
gwitching to minimize the amount of information that
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must be saved. Therefore, the microinterpreier checks
for interrupts at the timing after unification and after
built-in predicate evaluations. Furthermere, to activate
the interrupt handler process as soon as possible, some
micro routines which required a long processing time have
interrupt check points within them.

5.4 Error Handling

Since there are just two states in general unification
rule, “seccess” and “fail®, sometimes illegal conditions are
treated as “fail” conditions. Thus, error or exception han-
dling iz not sufficiently supported in existing Prolog ays-
tems. However, to provide a good programming environ-
ment, the system must detect as many illegal conditions as
possible. The microprogram implementation can achiewe
this with little increase in execution time.

If a detected illegal condition is a serious hardware
or firmware error, the microinterpreter immediately stops
execution. If the operating system must deal with It,
the microinterpreter raises & trap. The trap works in a
manner similar to that of interrupts. If an illegal condition
iz caused by a wser program, the microinterpreter raises
an exception. As described in Sectiom 4.3, 32 system
exceptions are deflned. Most of them are caused by the
illzgal input to built-in predicates.

5.5 Protection

Throughout the design of the P5I machine architee-
ture, the protection problem was given low priority. One
reazon is that P8I is designed for personal uze and privacy
between users i3 not considered to be a serious problem.
Another reason is that the machine language of PSI is
based om logic programming, and, therefore, there is no
concept of “address™. This means that users cannot access
arbitrary memery lecations.

However, two protection mechanisms are introduced
in order to enhance the reliability of the system. Omne
iz the detection of privileged violations and the other iz
intreduction of the new data type having keys.

Although many buili-in predicstes are provided for
users, some must be used very carefully. For example,
“gat-register” may cause damage to the system. These
built-in predicates are comsidered privileged instructions.
The microinterpreter restricts their execution within the
privileged area, not in the execution mode using in con-
ventiopal machines. Areas 0 to 3 are defined as privileged
greas, When a privileged built-in predicate iz called, the
microinterpreter examines whether it Iz called from area
0,1, 2, or 3. I it is not, an exception occurs. By this
mechanizm, both the mierointerpreter and the operating
system are freed from management of the execution mods,

thus simplifying the system.

For privileged data aceess, KLO has a special data
type, called a “protected type™. This type of the data
consists of a key and a value. When the protected type
appears in unification, it succeeds only if both data are
identizal; specifically, both arguments peinting physically
the same protected type. Therefore, a value of a protected
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type cannot be bound during unification. If such hind-
ing is necessary, the built-in predicate “set-protected-
value(X, Key, Valua)” must be used with the correct key.
By uze of the protected type, the restricted data, such as
system directories, can be shared among authorized nzers
who know its key.

6 CONCLUSION

The P5I machine instruction set is designed as high
as a logic programming language, Prolog. Its interpreter
iz implemented complately in microcode. The micro-
interpreter provides high performance and good operating
systam support by taking advantage of micropregramming
techniques and PSI hardware features. It can attain the
execution speed of 30K LIPS. A dynamic execution con-
trol mechanism and strong error checking are also imple-
manted in misrocods.

The kernel of the microinterpreter has become larger
than we estimated because of powerful K10 control struc-
tures. Ita size is about 1.5K steps, half of which are
for execution control; the rest are for unification. About
160 built-in predicates are implemented; a third of them
support the operating system and low-level hardware
manipuelations, another third ara for data handling. About
10K steps are required for the built-in predieates. Another
1K stepe are required for common routines, and for operat-
ing system interfaces, such as the interropt handler.

The basic part of the microinterpreter had already
been debugged using the microprogram simulator written
in Paseal before the PSI hardware was completed. The
first version running on PSI was released to the software
group on March, 1984,

The microprogrammed implemantation enables effici-
ent interpretation of logic programs. Howewer, this ap-
proach is not always the best way. A lot depends om the
balance between the hardware and software designs. The
P&l hardware and the micrainterpreter are being evaluated
in erder to clarify the ideal inference machine architec-
ture, and microcode will be refined to show its maximum
capabilities based on this evaluations.
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